
Colliders and Collisions
CMSC425.01 Fall 2019



Administrivia

• Hw1 due Wednesday
• Old Hw1 with solutions now on web site
• Also notes on Ray-Circle intersection
• Problem and solution from spring 2019
• Notes on the problem from this semester

• Final project proposal out 



Today’s questions

1) Applying geometry to game problems
2) How to detect object collisions

Later: How to put into Unity



Problem 1: Shot gun weapon 

• Problem: 
• Given weapon defined by 
• Location p
• Target point t
• Spread angle 𝜃

• And object defined by 
• Location q

• Return true if q hit

✓p

r q

(a)

✓ cv
p

r q

(b)

~u
cu

t t



Problem 1: Shot gun weapon

• Problem: 
• Given weapon defined by 
• Location p
• Target point t
• Spread angle 𝜃

• And object defined by 
• Location q

• Return true if q hit

✓p

r q

(a)

✓ cv
p

r q

(b)

~u
cu

t t



Problem 1: Shot gun weapon

• Problem: 
• Given weapon defined by 
• Location p
• Target point t
• Spread angle 𝜃

• And object defined by 
• Location q

• Return true if hit

✓p

r q

(a)

✓ cv
p

r q

(b)

~u
cu

t t



Problem 2: Projectile aiming tool

• Problem: 
• Given projectile with 
• Initial location (0,h,0)
• Initial velocity 𝑣⃗$ =< 𝑣$,(, 𝑣$,), 𝑣$,* >

• Find landing location
• Location (x,0,z)

h y

z

~v0

v0,zt
⇤

(a)

~v0
p = (px, h, pz)

qx

z
y

h

(b)



Problem 2: Projectile aiming tool

• Problem: 
• Given projectile with 
• Initial location (0,h,0)
• Initial velocity 𝑣⃗$ =< 𝑣$,(, 𝑣$,), 𝑣$,* >

• Find landing location
• Location (x,0,z)

h y

z

~v0

v0,zt
⇤

(a)

~v0
p = (px, h, pz)

qx

z
y

h

(b)



Problem 3: Shooting an(d) arrow

• Problem: 
• If projectile show direction (eg, arrow)
• Initial location (0,h,0)
• Initial velocity 𝑣⃗$ =< 𝑣$,(, 𝑣$,), 𝑣$,* >

• Find direction orientation 
• Location (x,0,z)

y

z

(a)

y

z

(b)



Problem 3: Shooting an(d) arrow

• Problem: 
• If projectile show direction (eg, arrow)
• Initial location (0,h,0)
• Initial velocity 𝑣⃗$ =< 𝑣$,(, 𝑣$,), 𝑣$,* >

• Find direction orientation 
• Location (x,0,z)

y

z

(a)

y

z

(b)



Problem 4: Evasive action 

• Problem: 
• Given ship defined by 
• Location p
• Forward vector v
• Up vector u (perpendicular to v?)

• And object defined by 
• Location q

• Determine if ship should evade
• Turning up or down
• Turning left or right

~v

~u

p

q

(a)

~v

~u

~r

p

q

(a)

~w

dw



Problem 4: Evasive action 

• Problem: 
• Given ship defined by 
• Location p
• Forward vector v
• Up vector u (perpendicular to v?)

• And object defined by 
• Location q

• Determine if ship should evade
• Turning up or down
• Turning left or right

~v

~u

p

q

(a)

~v

~u

~r

p

q

(a)

~w

dw



Problem 4: Evasive action 

• Problem: 
• Given ship defined by 
• Location p
• Forward vector v
• Up vector u (perpendicular to v?)

• And object defined by 
• Location q

• Determine if ship should evade
• Turning up or down
• Turning left or right

~v

~u

p

q

(a)

~v

~u

~r

p

q

(a)

~w

dw



Colliders and Collisions

• How to accurately and efficiently 
find collisions between game 
objects?

• Accurately – account for details of 
object shape
• Efficiently – considering both time 

and space



Collider shapes

• Finding good approximation
• Accurate enough
• Fast

• If inaccurate
• Ghost collisions

• Bounding shape is too big,
signals false collision

• Bad physics
• Collision pt at wrong place,

angle

• Too accurate then slow



How bound complex shape?

• How would you bound this 
shape?



Standard collider shapes

(a) Axis-aligned boxes (AABB)
(b) General bounding boxes
(c) Bounding spheres

(ellipsoids)

(d) Capsules
(e) k-DOPs (k-discrete 

oriented polytope)

Also – point, mesh,
convex hull

(b)(a) (c) (d) (e)

k = 8

u1
u2

p+

p�
p�

p+
r

p

a

b

r



What would you use?



Fitting the collider

• Data is a set of points



Fitting the collider

• Centroid and convex hull



Detecting collisions – how?

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

• AABB x AABB
• Box x Box
• Sphere x Sphere
• Capsule x Capsule 



"Easy" cases

• AABB x AABB • Sphere x Sphere

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0



Box to box with rotations

• Rotate one to align with axes

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0



Capsule to capsule

• Distance between two line 
segments

(a)

y02

y2

y01

y1

x1 x01 x2 x02

(b)

r p

r0

p0

(c)

a

b

a0

b0

(d)

b
b

b0



Other collisions

• Cone to point (shot gun)
• Sphere to plane (hw)
• Cylinder to point (practice)
• Point in polygon
• Polygon to polygon



How to do many efficiently?

• Hierarchical colliders
• First test bounding box
• If hit then test better collider

• Problem with many
• Better than n-squared
• No obvious sort in 2 or 3D



Sort and sweep algorithm

• Project bounding boxes on one 
coordinate
• Sort along that coordinate
• Filter tests to overlaps



Grid

• Overlap shapes on grid
• For each cell hit by shape, create 

ptr to shape

• If two shapes in same cell
then need further test

• What size grid?
• How update grid?

(a) (b) (c)

� �
q

pi

j

�
q

pi

j



Grid

• How treat moving and static 
objects?
• One agent in static space?



How store grid?

• Row-column order (standard)
• Hashmap
• Space filling order
• Hilbert
• Morton

• Bit shuffle for Morton’s
• See notes 

(a) (b) (c)

0

1 2

3 4 5

67

8 9

101112

1314

15

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

Row major Hilbert Morton (Z)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i =

j =

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7



Quadtrees: hierarchical space decomposition

• Four way division on midpoint
• NW, NE, SW, SE
• Midpt independent of data

• 3D
• Octrees

(a) (c)(b)

SW NW SE NE

SW

NW

SE

NE



K-d trees

• Alternating coordinates 
• Divisions based on data

p1

p2

p3

p4 p5

p6

p7

p8

p9
p10

p1 p2

p3 p4 p5

p6 p7

p8 p9 p10



Readings

• David Mount's lectures on Geometric problems, and on Geometric Data 
Structures

• Good tutorial on collisions
• https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects

https://www.toptal.com/game/video-game-physics-part-ii-collision-detection-for-solid-objects

