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Feature detectors

should be invariant or at least robust 

to affine changes 
translation 
rotation  
scale change



Scale Invariant Detection

■ Consider regions of different size 
■ Select regions to subtend the same content
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Scale Invariant detection
■ Sharp local intensity changes are good functions for 

identifying relative scale of the region 
■ Response of Laplacian of Gaussians (LoG) at a point
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Improved Invariance Handling
Want to find
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… in here



SIFT

• Scale-Invariant Feature Transform 
• David Lowe 
• Scale/rotation invariant 
• Currently best known feature descriptor 
• Applications 

– Object recognition, Robot localization



SIFT Features 
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Invariant Local Features

■ Image content is transformed into local feature coordinates 
that are invariant to translation, rotation, scale, and other 
imaging parameters



Example I: mosaicking 
Using SIFT features we match the different images



Using those matches we estimate the homography 
relating the two images



And we can “stich” the images



SIFT Algorithm

1. Detection 
– Detect points that can be repeatably 

selected under location/scale change 

2. Description 
– Assign orientation to detected feature 

points 
– Construct a descriptor for image patch 

around each feature point 

3. Matching



1. Keypoint Detection

This is the stage where the interest points, which are 
called keypoints in the SIFT framework, are detected. 
For this, the image is convolved with Gaussian filters at 
different scales, and then the difference of successive 
Gaussian-blurred images are taken. Keypoints are then 
taken as maxima/minima of the Difference of Gaussians 
(DoG) that occur at multiple scales.  
This is done by comparing each pixel in the DoG images 
to its eight neighbors at the same scale and nine 
corresponding neighboring pixels in each of the 
neighboring scales. If the pixel value is the maximum or 
minimum among all compared pixels, it is selected as a 
candidate keypoint.



1. Keypoint Detection - Gaussians
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1. Keypoint Detection -  
Difference of Gaussians



Gaussian Pyramid - each column is an octave



Difference of Gaussians for the Ist Octave



Difference of Gaussians for the 2nd Octave



1. Feature detection - Key point 
detection



1. Feature detection - Key point 
detection

Scale of an Image: L(x, y, σ) = G(x, y, σ) * I(x, y)

Gaussian, G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

Difference-of-Gaussian function:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) * I(x, y)
= L(x, y, kσ) − L(x, y, σ)

k = 2



1. Feature detection - Key point 
detection

Difference-of-Gaussian function:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) * I(x, y)
= L(x, y, kσ) − L(x, y, σ)

k = 2

Each octave is divided into, s, intervals, where s is an integer, 

k = 21/s

Produce s + 3 images in each octave



Repeatability

Lowe, 04



1. Feature detection - Key point 
detection



1. Feature detection - Key point 
detection



1. Key point localization
D(x, y, σ)

x0 x0 + x

Real key point

x = (x, y, σ)

Sampling



1. Key point localization

• Detailed fit using data surrounding the 
keypoint to Localize extrema by fitting a 
quadratic, to nearby data for location, scale 
and ratio of principal curvatures 

1) Sub-pixel/sub-scale interpolation using Taylor 
expansion

D( x ) = D +
∂DT

∂ x
x +

1
2

x T ∂2D
∂ x 2

x x = (x, y, σ)T;

Location of the extrema,  ̂x = −
∂2D
∂x2

−1 ∂D
∂x

by taking a derivative and setting it to zero



1. Key point localization

1) Sub-pixel/sub-scale interpolation using Taylor 
expansion

D( x ) = D +
∂DT

∂ x
x +

1
2

x T ∂2D
∂ x 2

x x = (x, y, σ)T;

Location of the extrema,  ̂x = −
∂2D
∂x2

−1 ∂D
∂x

∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2

D( ̂x) = D +
1
2

∂D
∂x

̂x  Discard  |D( ̂x) | < 0.03
key points with low contrast



1. Key point localization - Eliminating 
edge response

1) Principal curvatures can be computed from a 2 x 
2 Hessian matrix

H = [
Dxx Dxy

Dxy Dyy]

∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2



1. Key point localization - Eliminating 
edge response

1) Principal curvatures can be computed from a 2 x 
2 Hessian matrix

H = [
Dxx Dxy

Dxy Dyy]
∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2

Dxy =
D(x + 1,y + 1,σ) − D(x − 1,y + 1,σ)

2 − D(x + 1,y − 1,σ) − D(x − 1,y − 1,σ)
2

2



1. Feature detection - Keypoint 
localization

• Discard low-contrast/edge points 
1) Low contrast: discard keypoints with       

threshold < 0.03 
2) Edge points: high contrast in one direction, low 

in the other ! compute principal curvatures 
from eigenvalues of 2x2 Hessian matrix, and 
limit ratio

r =
α
β

r= 10



1. Keypoint detection - scale and 
location

• Example

(a) 233x189 image 
(b) 832 DOG extrema 
(c) 729 left after peak 
      value threshold 
(d) 536 left after testing 
      ratio of principle 
      curvatures 



2. Orientation Assignment

– Assign canonical orientation at peak of smoothed 
histogram

•   Assign orientation to keypoints 

m(x, y) = (L(x + 1,y) − L(x − 1,y))2 + (L(x, y + 1) − L(x, y − 1))2

Gradient magnitude, 

Orientation,

θ(x, y) = tan−1( L(x, y + 1) − L(x, y − 1)
L(x + 1,y) − L(x − 1,y) )



2. Orientation Assignment

– Create histogram of local gradient directions 
computed at selected scale

•   Assign orientation to keypoints 

Orientation histogram has 36 bins each covering 10 degrees

Peaks in the orientation histogram correspond to dominant directions of  
local gradients.

Any other local peak, within 80% of the highest peak is also used to create 
a key point with that orientation.

There may be multiple key points with same location and scale but 
different orientation.



2. Feature description
• Construct SIFT descriptor 

– Create array of orientation histograms 
– 8 orientations x 4x4 histogram array = 128 

dimensions



2. Feature description
• Advantage over simple correlation 

– less sensitive to illumination change 
– robust to deformation, viewpoint change



3. Feature matching

• For each feature in A, find nearest neighbor in B

A B



3. Feature matching

• Nearest neighbor search too slow for large 
database of 128-dimensional data 

• Approximate nearest neighbor search: 
• Result: Can give speedup by factor of 1000 

while finding nearest neighbor (of interest) 
95% of the time



3. Feature matching

• Example: 3D object recognition


