
SIFT

Mohammad Nayeem Teli

Feature detectors

should be invariant or at least robust

to affine changes
translation
rotation
scale change

Scale Invariant Detection

■ Consider regions of different size
■ Select regions to subtend the same content

!3

Scale Invariant detection
■ Sharp local intensity changes are good functions for

identifying relative scale of the region
■ Response of Laplacian of Gaussians (LoG) at a point

CS 685l

!4

Improved Invariance Handling
Want to find

!5

… in here

SIFT

• Scale-Invariant Feature Transform
• David Lowe
• Scale/rotation invariant
• Currently best known feature descriptor
• Applications

– Object recognition, Robot localization

SIFT Features

84

Invariant Local Features

■ Image content is transformed into local feature coordinates
that are invariant to translation, rotation, scale, and other
imaging parameters

Example I: mosaicking 
Using SIFT features we match the different images

Using those matches we estimate the homography
relating the two images

And we can “stich” the images

SIFT Algorithm

1. Detection
– Detect points that can be repeatably

selected under location/scale change

2. Description
– Assign orientation to detected feature

points
– Construct a descriptor for image patch

around each feature point

3. Matching

1. Keypoint Detection

This is the stage where the interest points, which are
called keypoints in the SIFT framework, are detected.
For this, the image is convolved with Gaussian filters at
different scales, and then the difference of successive
Gaussian-blurred images are taken. Keypoints are then
taken as maxima/minima of the Difference of Gaussians
(DoG) that occur at multiple scales.
This is done by comparing each pixel in the DoG images
to its eight neighbors at the same scale and nine
corresponding neighboring pixels in each of the
neighboring scales. If the pixel value is the maximum or
minimum among all compared pixels, it is selected as a
candidate keypoint.

1. Keypoint Detection - Gaussians
O

ct
av

e

Scale

O
ct

av
e

Scale

1. Keypoint Detection -  
Difference of Gaussians

Gaussian Pyramid - each column is an octave

Difference of Gaussians for the Ist Octave

Difference of Gaussians for the 2nd Octave

1. Feature detection - Key point
detection

1. Feature detection - Key point
detection

Scale of an Image: L(x, y, σ) = G(x, y, σ) * I(x, y)

Gaussian, G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

Difference-of-Gaussian function:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) * I(x, y)
= L(x, y, kσ) − L(x, y, σ)

k = 2

1. Feature detection - Key point
detection

Difference-of-Gaussian function:

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) * I(x, y)
= L(x, y, kσ) − L(x, y, σ)

k = 2

Each octave is divided into, s, intervals, where s is an integer,

k = 21/s

Produce s + 3 images in each octave

Repeatability

Lowe, 04

1. Feature detection - Key point
detection

1. Feature detection - Key point
detection

1. Key point localization
D(x, y, σ)

x0 x0 + x

Real key point

x = (x, y, σ)

Sampling

1. Key point localization

• Detailed fit using data surrounding the
keypoint to Localize extrema by fitting a
quadratic, to nearby data for location, scale
and ratio of principal curvatures

1) Sub-pixel/sub-scale interpolation using Taylor
expansion

D(x) = D +
∂DT

∂ x
x +

1
2

x T ∂2D
∂ x 2

x x = (x, y, σ)T;

Location of the extrema, ̂x = −
∂2D
∂x2

−1 ∂D
∂x

by taking a derivative and setting it to zero

1. Key point localization

1) Sub-pixel/sub-scale interpolation using Taylor
expansion

D(x) = D +
∂DT

∂ x
x +

1
2

x T ∂2D
∂ x 2

x x = (x, y, σ)T;

Location of the extrema, ̂x = −
∂2D
∂x2

−1 ∂D
∂x

∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2

D(̂x) = D +
1
2

∂D
∂x

̂x Discard |D(̂x) | < 0.03
key points with low contrast

1. Key point localization - Eliminating
edge response

1) Principal curvatures can be computed from a 2 x
2 Hessian matrix

H = [
Dxx Dxy

Dxy Dyy]

∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2

1. Key point localization - Eliminating
edge response

1) Principal curvatures can be computed from a 2 x
2 Hessian matrix

H = [
Dxx Dxy

Dxy Dyy]
∂D
∂x

=

∂D
∂x
∂D
∂y
∂D
∂σ

=

D(x + 1,y, σ) − D(x − 1,y, σ)
2

D(x, y + 1,σ) − D(x, y − 1,σ)
2

D(x, y, σ + 1) − D(x, y, σ − 1)
2

Dxy =
D(x + 1,y + 1,σ) − D(x − 1,y + 1,σ)

2 − D(x + 1,y − 1,σ) − D(x − 1,y − 1,σ)
2

2

1. Feature detection - Keypoint
localization

• Discard low-contrast/edge points
1) Low contrast: discard keypoints with

threshold < 0.03
2) Edge points: high contrast in one direction, low

in the other ! compute principal curvatures
from eigenvalues of 2x2 Hessian matrix, and
limit ratio

r =
α
β

r= 10

1. Keypoint detection - scale and
location

• Example

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak
 value threshold
(d) 536 left after testing
 ratio of principle
 curvatures

2. Orientation Assignment

– Assign canonical orientation at peak of smoothed
histogram

• Assign orientation to keypoints

m(x, y) = (L(x + 1,y) − L(x − 1,y))2 + (L(x, y + 1) − L(x, y − 1))2

Gradient magnitude,

Orientation,

θ(x, y) = tan−1(L(x, y + 1) − L(x, y − 1)
L(x + 1,y) − L(x − 1,y))

2. Orientation Assignment

– Create histogram of local gradient directions
computed at selected scale

• Assign orientation to keypoints

Orientation histogram has 36 bins each covering 10 degrees

Peaks in the orientation histogram correspond to dominant directions of
local gradients.

Any other local peak, within 80% of the highest peak is also used to create
a key point with that orientation.

There may be multiple key points with same location and scale but
different orientation.

2. Feature description
• Construct SIFT descriptor

– Create array of orientation histograms
– 8 orientations x 4x4 histogram array = 128

dimensions

2. Feature description
• Advantage over simple correlation

– less sensitive to illumination change
– robust to deformation, viewpoint change

3. Feature matching

• For each feature in A, find nearest neighbor in B

A B

3. Feature matching

• Nearest neighbor search too slow for large
database of 128-dimensional data

• Approximate nearest neighbor search:
• Result: Can give speedup by factor of 1000

while finding nearest neighbor (of interest)
95% of the time

3. Feature matching

• Example: 3D object recognition

