SIFT

Mohammad Nayeem Teli

Feature detectors

should be invariant or at least robust
to affine changes
translation
rotation
scale change

Scale Invariant Detection

- Consider regions of different size
- Select regions to subtend the same content

Scale Invariant detection

- Sharp local intensity changes are good functions for identifying relative scale of the region
- Response of Laplacian of Gaussians (LoG) at a point

Improved Invariance Handling

Want to find

... in here

SIFT

- Scale-Invariant Feature Transform
- David Lowe
- Scale/rotation invariant
- Currently best known feature descriptor
- Applications
- Object recognition, Robot localization

Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

Example I: mosaicking Using SIFT features we match the different images

Using those matches we estimate the homography relating the two images

And we can "stich" the images

SIFT Algorithm

1. Detection

- Detect points that can be repeatably selected under location/scale change

2. Description

- Assign orientation to detected feature points
- Construct a descriptor for image patch around each feature point

3. Matching

1. Keypoint Detection

This is the stage where the interest points, which are called keypoints in the SIFT framework, are detected. For this, the image is convolved with Gaussian filters at different scales, and then the difference of successive Gaussian-blurred images are taken. Keypoints are then taken as maxima/minima of the Difference of Gaussians (DoG) that occur at multiple scales.
This is done by comparing each pixel in the DoG images to its eight neighbors at the same scale and nine corresponding neighboring pixels in each of the neighboring scales. If the pixel value is the maximum or minimum among all compared pixels, it is selected as a candidate keypoint.

1. Keypoint Detection - Gaussians

1. Keypoint Detection Difference of Gaussians

Gaussian Pyramid - each column is an octave

Difference of Gaussians for the Ist Octave

Difference of Gaussians for the 2nd Octave

1. Feature detection - Key point detection

1. Feature detection - Key point detection

Scale of an Image: $L(x, y, \sigma)=G(x, y, \sigma) * I(x, y)$
Gaussian, $G(x, y, \sigma)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}}$

Difference-of-Gaussian function:

$$
\begin{aligned}
D(x, y, \sigma) & =(G(x, y, k \sigma)-G(x, y, \sigma)) * I(x, y) \\
& =L(x, y, k \sigma)-L(x, y, \sigma)
\end{aligned}
$$

$$
k=\sqrt{2}
$$

1. Feature detection - Key point detection

Difference-of-Gaussian function:

$$
\begin{aligned}
D(x, y, \sigma) & =(G(x, y, k \sigma)-G(x, y, \sigma)) * I(x, y) \\
& =L(x, y, k \sigma)-L(x, y, \sigma)
\end{aligned}
$$

$k=\sqrt{2}$

Each octave is divided into, s , intervals, where s is an integer,

$$
k=2^{1 / s}
$$

Produce s + 3 images in each octave

Repeatability

Lowe, 04

1. Feature detection - Key point detection

1. Feature detection - Key point detection

\circ \square

1. Key point localization

Real key point

1. Key point localization

- Detailed fit using data surrounding the keypoint to Localize extrema by fitting a quadratic, to nearby data for location, scale and ratio of principal curvatures

1) Sub-pixel/sub-scale interpolation using Taylor expansion

$$
\begin{aligned}
& \qquad D(\vec{x})=D+\frac{\partial D^{T}}{\partial \vec{x}} \vec{x}+\frac{1}{2} \vec{x}^{T} \frac{\partial^{2} D}{\partial \vec{x}^{2}} \vec{x} \quad ; \quad \vec{x}=(x, y, \sigma)^{T} \\
& \text { Location of the extrema, } \hat{x}=-\frac{\partial^{2} D^{-1}}{\partial x^{2}} \frac{\partial D}{\partial x}
\end{aligned}
$$

by taking a derivative and setting it to zero

1. Key point localization

1) Sub-pixel/sub-scale interpolation using Taylor expansion

$$
D(\vec{x})=D+\frac{\partial D^{T}}{\partial \vec{x}} \vec{x}+\frac{1}{2} \vec{x}^{T} \frac{\partial^{2} D}{\partial \vec{x}^{2}} \vec{x} \quad ; \quad \vec{x}=(x, y, \sigma)^{T}
$$

Location of the extrema, $\hat{x}=-\frac{\partial^{2} D^{-1}}{\partial x^{2}} \frac{\partial D}{\partial x}$

$$
\frac{\partial D}{\partial x}=\left[\begin{array}{l}
\frac{\partial D}{\partial x} \\
\frac{\partial D}{\partial y} \\
\frac{\partial D}{\partial \sigma}
\end{array}\right]=\left[\begin{array}{l}
\frac{D(x+1, y, \sigma)-D(x-1, y, \sigma)}{2} \\
\frac{D(x, y+1, \sigma)-D(x, y-1, \sigma)}{2} \\
\frac{D(x, y, \sigma+1)-D(x, y, \sigma-1)}{2}
\end{array}\right]
$$

$$
D(\hat{x})=D+\frac{1}{2} \frac{\partial D}{\partial x} \hat{x}
$$

Discard $|D(\hat{x})|<0.03$

1. Key point localization - Eliminating edge response

1) Principal curvatures can be computed from a $2 x$ 2 Hessian matrix

$$
H=\left[\begin{array}{ll}
D_{x x} & D_{x y} \\
D_{x y} & D_{y y}
\end{array}\right]
$$

$$
\frac{\partial D}{\partial x}=\left[\begin{array}{l}
\frac{\partial D}{\partial x} \\
\frac{\partial D}{\partial y} \\
\frac{\partial D}{\partial \sigma}
\end{array}\right]=\left[\begin{array}{c}
\frac{D(x+1, y, \sigma)-D(x-1, y, \sigma)}{2} \\
\frac{D(x, y+1, \sigma)-D(x, y-1, \sigma)}{2} \\
\frac{D(x, y, \sigma+1)-D(x, y, \sigma-1)}{2}
\end{array}\right]
$$

1. Key point localization - Eliminating edge response

1) Principal curvatures can be computed from a $2 x$ 2 Hessian matrix

$$
H=\left[\begin{array}{ll}
D_{x x} & D_{x y} \\
D_{x y} & D_{y y}
\end{array}\right] \quad \frac{\partial D}{\partial x}=\left[\begin{array}{c}
\frac{\partial D}{\partial x} \\
\frac{\partial D}{\partial y} \\
\frac{\partial D}{\partial \sigma}
\end{array}\right]=\left[\begin{array}{l}
\frac{D(x+1, y, \sigma)-D(x-1, y, \sigma)}{2} \\
\frac{D(x, y+1, \sigma)-D(x, y-1, \sigma)}{2} \\
\frac{D(x, y, \sigma+1)-D(x, y, \sigma-1)}{2}
\end{array}\right]
$$

$$
D_{x y}=\frac{\frac{D(x+1, y+1, \sigma)-D(x-1, y+1, \sigma)}{2}-\frac{D(x+1, y-1, \sigma)-D(x-1, y-1, \sigma)}{2}}{2}
$$

1. Feature detection - Keypoint localization

Discard low-contrast/edge points

1) Low contrast: discard keypoints with threshold < 0.03
2) Edge points: high contrast in one direction, low in the other \rightarrow compute principal curvatures from eigenvalues of 2×2 Hessian matrix, and limit ratio

$$
\begin{gathered}
\mathbf{H}=\left[\begin{array}{ll}
D_{x x} & D_{x y} \\
D_{x y} & D_{y y}
\end{array}\right] \\
\operatorname{Tr}(\mathbf{H})=D_{x x}+D_{y y}=\alpha+\beta, \\
\operatorname{Det}(\mathrm{H})=D_{x x} D_{y y}-\left(D_{x y}\right)^{2}=\alpha_{i} \beta .
\end{gathered}
$$

$r=\frac{\alpha}{\beta}$

$$
\frac{\operatorname{Tr}(\mathbf{H})^{2}}{\operatorname{Det}(\mathbf{H})}<\frac{(r+1)^{2}}{r}
$$

1. Keypoint detection - scale and location

- Example

(a) 233×189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures

2. Orientation Assignment

- Assign orientation to keypoints
- Assign canonical orientation at peak of smoothed histogram

Gradient magnitude,

$$
m(x, y)=\sqrt{(L(x+1, y)-L(x-1, y))^{2}+(L(x, y+1)-L(x, y-1))^{2}}
$$

Orientation,

$$
\theta(x, y)=\tan ^{-1}\left(\frac{L(x, y+1)-L(x, y-1)}{L(x+1, y)-L(x-1, y)}\right)
$$

2. Orientation Assignment

- Assign orientation to keypoints
- Create histogram of local gradient directions computed at selected scale

Orientation histogram has 36 bins each covering 10 degrees
Peaks in the orientation histogram correspond to dominant directions of local gradients.

Any other local peak, within 80% of the highest peak is also used to create a key point with that orientation.

There may be multiple key points with same location and scale but different orientation.

2. Feature description

- Construct SIFT descriptor
- Create array of orientation histograms
- 8 orientations $\times 4 \times 4$ histogram array $=128$ dimensions

Keypoint descriptor

2. Feature description

- Advantage over simple correlation
- less sensitive to illumination change
- robust to deformation, viewpoint change

3. Feature matching

- For each feature in A, find nearest neighbor in B

A

B

3. Feature matching

- Nearest neighbor search too slow for large database of 128-dimensional data
- Approximate nearest neighbor search:
- Result: Can give speedup by factor of 1000 while finding nearest neighbor (of interest) 95\% of the time

3. Feature matching

- Example: 3D object recognition

