Geometric Transformations

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Camera Obscura

First Idea:Mo-Ti , China (470 BC to 390 BC)

First built: Ibn Al-Haytham or Alhazen, Iraq/Egypt (965 to 1039AD)

Camera Obscura

illum in tabula per radios Solis, quam in coelo contingit: hoc eft,fi in ceclo fupcrior pars deliquiũ patiarur, in radiis apparebit inferior deficere, vt ratio exigit optica.

Sic nos exatt Anno.1544. Louanii eclipfim Solis obferuauirnus, inuenimuśq; deficere pauló plus \ddot{q} dex-
"When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position, owing to the intersection of the rays".

Da Vinci

Pinhole cameras

- Abstract camera model - box with a small hole in it
- Pinhole cameras work in practice
image plane

(Forsyth \& Ponce)

Distant objects are smaller

(Forsyth \& Ponce)

Parallel lines meet

Common to draw image plane in front of the focal point. Moving the image plane merely scales the image.

(Forsyth \& Ponce)

Vanishing points

- Each set of parallel lines meets at a different point
- The vanishing point for this direction
- Sets of parallel lines on the same plane lead to collinear vanishing points.
- The line is called the horizon for that plane

Properties of Projection

- Points project to points
- Lines project to lines
- Planes project to the whole image or a half image
- Angles are not preserved
-Degenerate cases
- Line through focal point projects to a point.
- Plane through focal point projects to line
- Plane perpendicular to image plane projects to part of the image (with horizon).

Take out paper and pencil

http://www.sanford-artedventures.com/create/tech_1pt_perspective.html

The equation of projection

(Forsyth \& Ponce)

The equation of projection

- Cartesian coordinates:
- We have, by similar triangles, that

$$
\begin{aligned}
& x^{\prime}=f^{\prime} \frac{x}{z} \\
& y^{\prime}=f^{\prime} \frac{y}{z}
\end{aligned}
$$

$$
(x, y, z) \rightarrow\left(f^{\prime} \frac{x}{z}, f^{\prime} \frac{y}{z}, f^{\prime}\right)
$$

- Ignore the third coordinate, and get

$$
(x, y, z) \rightarrow\left(f^{\prime} \frac{x}{z}, f^{\prime} \frac{y}{z}\right)
$$

Pinhole camera model - in maths

- Similar trinagles: $\frac{y}{f}=\frac{Y}{Z}$
- That gives: $y=\int \frac{Y}{Z}$ and $x=\int \frac{X}{Z}$

$$
\text { That gives: }\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]
$$

Pinhole camera model - in maths

That gives: $\quad\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\underbrace{\left[\begin{array}{lll}f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1\end{array}\right]}_{\text {Galibration matrix } K}\left[\begin{array}{l}X \\ Y \\ 7\end{array}\right]$
In short $\boldsymbol{x}=\boldsymbol{K} \tilde{\boldsymbol{X}}$ (here $\tilde{\boldsymbol{X}}$ means inhomogeneous coordinates)
Intrinsic Camera Calibration means we know \boldsymbol{K} (we do that later)
We can go from image points into the 3D world: $\tilde{\boldsymbol{X}}=\boldsymbol{K}^{1} \boldsymbol{x}$

Pinhole camera - definitions

- Principal axis: line from the camera center perpendicular to the image plane
- Normalized (camera) coordinate system: camera center is at the origin and the principal axis is the z-axis
- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)

Principal Point

- Camera coordinate system: origin is at the principal point
- Image coordinate system: origin is in the corner In practice: principal point in center of the image

Adding principal point into \boldsymbol{K}

Principal point $\left(p_{x}, p_{y}\right)$

Projection with principal point : $y=f \frac{Y}{z}+p_{y}=\frac{\Gamma \gamma+z_{p} y}{z}$ and $x=f \frac{X}{z}+p_{x}=\frac{f x \mid z p_{x}}{z}$

That gives: $\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]$

Adding principal point into \boldsymbol{K}

Principal point $\left(p_{x}, p_{y}\right)$

Projection with principal point : $y=f \frac{Y}{z}+p_{y}=\frac{\Gamma \gamma+z_{p} y}{z}$ and $x=f \frac{X}{z}+p_{x}=\frac{f x \mid z p_{x}}{z}$

That gives: $\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z\end{array}\right]$

Intrinsic matrix, K

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
f & 0 & p_{x} \\
0 & f & p_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & p_{x} \\
0 & 1 & p_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Pixel Size and Shape

- m_{\varkappa} pixels per unit (m, mm, inch,...) in horizontal direction
- m_{y} pixels per unit (m, mm, inch,...) in vertical direction
- s^{t} skew of a pixel
- In practice (close to): $m=1 \mathrm{~s}=0$

That gives: $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}m_{x} & s^{\prime} & 0 \\ 0 & m_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}f & 0 & p_{x} \\ 0 & f & p_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$
Simplified to: $\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\left[\begin{array}{ccc}f & s & p_{x} \\ 0 & m f & p_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$

$$
\int \text { now in units of pixels }
$$

Final calibration matrix K

Camera intrinsic parameters - Summary

- Intrinsic parameters
- Principal point coordinates $\left(p_{x}, p_{y}\right)$
- Focal length f
- Pixel magnification factors m

$$
\boldsymbol{K}=\left[\begin{array}{ccc}
f & s & p_{x} \\
0 & m f & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Skew (non-rectangular pixels) s

Three different coordinate systems

Putting the camera into the world

camera coordinate system

World coordinate system
Given a 3D homogenous point X^{w} in world coordinate system

1) Translate from world to camera coordinate system:

$$
\tilde{X}^{c^{\prime}}=\tilde{\boldsymbol{X}}^{w}-\tilde{C}
$$

$$
\tilde{\boldsymbol{X}}^{c^{\prime}}=\underbrace{\left(\boldsymbol{I}_{3 \times 3} \mid \tilde{\boldsymbol{C}}\right)}_{3 \times 4 \text { matrix }} \boldsymbol{X}^{\boldsymbol{w}} \quad \text { where } \boldsymbol{I}_{\mathbf{3} \times 3} \text { is } 3 \times 3 \text { identity matrix }
$$

2) Rotate world coordinate system into camera coordinate system

$$
\tilde{\boldsymbol{X}}^{c}=\boldsymbol{R}\left(\boldsymbol{I}_{3 \times 3} \mid-\tilde{\boldsymbol{C}}\right) \boldsymbol{X}^{\boldsymbol{w}}
$$

3) Apply camera matrix

$$
x=K R\left(I_{3 \times 3} \mid-\tilde{C}\right) X
$$

Camera extrinsic (or external) parameters

- Transform a point from the world coordinate to the camera's coordinate system
- Translation and rotation

$$
\begin{aligned}
& X_{c}=R\left(X_{w}-C_{w}\right) \\
& X_{c}=R X_{w}-R C_{w}
\end{aligned} \quad\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & -R C_{w} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]
$$

Camera extrinsic (or external) parameters

$$
\begin{aligned}
& {\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & -R C_{w} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
R & -R C_{w} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
I & -C_{w} \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
R & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cc}
I & -C_{w} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & -c_{x} \\
0 & 1 & 0 & -C_{y} \\
0 & 0 & 1 & -C_{z} \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Camera extrinsic (or external) parameters

$$
\begin{aligned}
& {\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllc}
1 & 0 & 0 & -C_{x} \\
0 & 1 & 0 & -C_{y} \\
0 & 0 & 1 & -C_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=R\left(I_{3 \times 3} \mid-C_{w}\right)\left[\begin{array}{c}
X_{w} \\
Y_{w} \\
Z_{w} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=K\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]}
\end{aligned}
$$

- Camera matrix \mathbf{P} is defined as:

$$
\boldsymbol{x}=\underbrace{K R\left(I_{3 \times 3} \mid-\tilde{C}\right)}_{P(\mathbf{3} \times 4) \text { camera matrix has } 11 \text { DoF }} X
$$

- In short we write: $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{X}$

Camera matrix

- Camera matrix \boldsymbol{P} is defined as:

$$
x=\underbrace{K R\left(I_{3 \times 3} \mid-\tilde{C}\right)}_{P(3 \times 4) \text { camera matrix has } 11 \text { DoF }} X
$$

- In short we write: $x=P X$

Image of a Point

Homogeneous coordinates of a 3-D point p

$$
\boldsymbol{X}=[X, Y, Z, W]^{T} \in \mathbb{R}^{4}, \quad(W=1)
$$

Homogeneous coordinates of its 2-D image

$$
x=[x, y, z]^{T} \in \mathbb{R}^{3}, \quad(z=1)
$$

Projection of a 3-D point to an image plane

$$
\begin{array}{r}
\lambda x=P X \\
\lambda \in \mathbb{R}, \mathrm{P}=[R, T] \in \mathbb{R}^{3 \times 4}
\end{array}
$$

Camera parameters - Summary

- Camera matrix P has 11 DoF
- Intrinsic parameters
- Principal point coordinates (p_{x}, p_{y})

$$
\begin{aligned}
& x-P X \\
& x=K R\left(I_{3 \times 3} \mid-\tilde{C}\right) X
\end{aligned}
$$

$$
K=\left[\begin{array}{ccc}
f & s & p_{x} \\
0 & m f & p_{y} \\
0 & 0 & 1
\end{array}\right]
$$

- Focal length f
- Pixel magnification factors m
- Skew (non-rectangular pixels) s
- Extrinsic parameters
- Rotation R (3D०F) and translation $\tilde{\mathrm{C}}$ (3DoF) relative to world coordinate system

