Homography

Homography

Homography

2D homography (projective transformation)

Theorem:

A mapping h : $\mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$ is a homography if and only if there exist a non-singular 3×3 matrix \mathbf{H} such that for any point in P^{2} represented by a vector x it is true that $h(\mathrm{x})=\mathrm{Hx}$

Definition: Homography

$$
\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]
$$

Homography=projective transformation=projectivity=collineation

General homography

- Note: homographies are not restricted to P2
- General definition:

A homography is a non-singular, line preserving, projective mapping $\mathrm{h}: \mathrm{Pn} \rightarrow \mathrm{Pn}$. It is represented by a square $(\mathrm{n}+1)$-dim matrix
with $(n+1)^{2-1}$ DOF

- Now back to the 2D case..
- Mapping between planes

Homographies in Computer visior

Rotating/translating camera, planar world

$$
(x, y, 1)^{T}=x \propto P X=\boldsymbol{K}\left[\boldsymbol{r}_{1} \boldsymbol{r}_{2} \wedge_{\bullet} t\right]\left(\begin{array}{l}
X \\
Y \\
Q \\
1
\end{array}\right)=H\left(\begin{array}{l}
X \\
Y \\
1
\end{array}\right)
$$

What happens to the P-matrix, if Z is assumed

Homographies in Computer vision

Rotating camera, arbitrary
world

$(x, y, 1)^{T}=x \propto P X=K\left(n _r \lambda\left(\left.\begin{array}{c}X \\ Y\end{array} \right\rvert\, \propto K R K^{-1} x^{\prime}=H x^{\prime}\right.\right.$
What happens to the P -matrix, if t is assumed zero?

To unwarp (rectify) an image

- solve for homography \mathbf{H} given \mathbf{p} and \mathbf{p} '
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of \mathbf{H}
-H is defined up to an arbitrary scale factor
- how many points are necessary to solve for \mathbf{H} ?

$$
\begin{aligned}
& \text { Solvin@ for homoonra@hies } \\
& {\left[\begin{array}{c}
x_{i}^{\prime} \\
y_{i}^{\prime} \\
1
\end{array}\right] } \cong\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right] \\
& x_{i}^{\prime}=\frac{h_{00} x_{i}+h_{01} y_{i}+h_{02}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}} \\
& y_{i}^{\prime}=\frac{h_{10} x_{i}+h_{11} y_{i}+h_{12}}{h_{20} x_{i}+h_{21} y_{i}+h_{22}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02} \\
& y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}
\end{aligned}
$$

$$
\left[\begin{array}{ccccccccc}
x_{2} & y_{i} & 1 & 0 & 0 & 0 & -x_{3}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{3}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -i_{2}^{\prime} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{01} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

Solvina for homoaraphies
 $\left[\begin{array}{ccccccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & y_{1}^{\prime} x_{1} & y_{1}^{\prime} y_{1} & y_{1}^{\prime} \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}\end{array}\right]\left[\begin{array}{c}h_{01} \\ h_{02} \\ i_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0\end{array}\right]$

Linear least squares

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$
- Minimize $\|A \hat{h}\|^{2}$

$$
\|\mathbf{A} \hat{\mathbf{h}}\|^{2}=(\mathbf{A} \hat{\mathbf{h}})^{T} \mathbf{A} \hat{\mathbf{h}}=\hat{\mathbf{h}}^{T} \mathbf{A}^{T} \mathbf{A} \hat{\mathbf{h}}
$$

- Solution: $\hat{h}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Inhomogeneous solution

Since h can only be computed up to scale, impose constraint pick $h_{j}=1$, e.g. $h_{9}=1$, and solve for 8 -vector

$$
\begin{aligned}
& \left.\begin{array}{llllllllll}
0 & 0 & 0 & -x_{i} w_{i}{ }^{\prime} & -y_{i} w_{i}{ }^{\prime} & -w_{i} w_{i}{ }^{\prime} & x_{i} y_{i}{ }^{\prime} & y_{i} y_{i}{ }^{\prime}
\end{array}\right] \quad\left(-w_{i} y_{i}{ }^{\prime}\right)
\end{aligned}
$$

Can be solved using linear leastsquares

However, if $\mathrm{h}_{9}=0$ this approach fails Also poor results if h_{9} close to zero Therefore, not recommended

Feature matching

descriptors for left image feature points
descriptors for right image feature points

SIFT features

- Example

(a) 233×189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures

Strategies to match images robustly

(a)Working with individual features: For each feature point, find most similar point in other image (SIFT distance)
Reject ambiguous matches where there are too many similar points
(b)Working with all the features: Given some good feature matches, look for possible homographies relating the two images
Reject homographies that don't have many featurematches.

(a) Feature-space outlier rejection

- Let's not match all features, but only these that have "similar enough" matches?
- How can we do it?
$-\operatorname{SSD}($ patch1,patch2) $<$ threshold
- How to set threshold? Not so easy.

Feature-space outlier rejection

- A better way [Lowe, 1999]:
$-1-\mathrm{NN}$: SSD of the closest match
$-2-N N: ~ S S D$ of the second-closest match
- Look at how much better $1-\mathrm{NN}$ is than $2-\mathrm{NN}$, e.g. $1-\mathrm{NN} / 2-\mathrm{NN}$
- That is, is our best match so much better than the rest?

RAndom SAmple Consensus

RANSAC for estimating homography

RANSAC loop:
Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where $\left\|\mathrm{p}_{\mathrm{i}}{ }^{\prime}, \mathrm{H}_{\mathrm{i}}\right\|<\varepsilon$
Keep largest set of inliers
Re-compute least-squares H estimate using all of the inliers

