Image Motion









Brightness Constancy Equation

Image intensity at Time =t, I(x, y, 1)
Image intensity at Time =t + dt, I(x + dx,y + dy, t + dt)

Assuming I(x,y,H) = I(x+dx,y +dy,t+ dt)

Taylor Series expansion
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Brightness Constancy Equation
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Taking derivative wrt time:
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Brightness Constancy Equation
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Brightness Constancy Equation
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Aperture Problem 1n Real Life
Aperture Problem

Barber pole illusion

A Z axis
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Solving the aperture problem

* How to get more equations for a pixel?
— Basic 1dea: impose additional constraints

e most common is to assume that the flow field is smooth locally
« one method: pretend the pixel’s neighbors have the same (u,v)

— If we use a 5x5 window, that gives us 25 equations per pixel!
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[Lukas-Kanade flow

 Prob: we have more equations than unknowns

A d=0b

25x2 2x1 25x1

» minimize ||Ad — b||?

« Solution: solve least squares problem

— minimum least squares solution given by solution (in d)
off (ATA)d= ATH
2x2 2x1 2x1
PN EY DY Ia:Iy wol > 121y

AT A Alp
— The summations are over all pixels in the K x K window
— This technique was first proposed by Lukas & Kanade (1981)



Taking a closer look at (ATA).

This is the same matrix we used for corner detection!
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Taking a closer look at (ATA)

The matrix for corner detection:

XL XL
PREEDN
is singular (not invertible) when det(ATA) = 0

But det(ATA) =][ A, =0 ->one or both e.v. are O

ATA =

One e.v. = 0 -> o corner, just an edge . Aperture
Two e.v. = 0 -> no corner, homogeneous region | Problem !
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Svivin!
— large gradients, all the same
— large 4, small 2,




Low texture region
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Sovivn!
— gradients have small magnitude
—small A, small A,




High textured region
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Svivn’ =

— gradients are different, large magnitudes -
— large A4, large A,




An improvement ...

e NOTE:

— The assumption of constant OF 1s more likely to
be wrong as we move away from the point of
interest (the center point of Q)

Use weights to control
the influence of the
points: the farther
from p, the less weight




Solving for v with weights:

Let W be a diagonal matrix with weights

Multiply both sides of Av =b by W:
WAv=WbH

Multiply both sides of WAv = Wb by (WA)T:
AT WWA v=AT WWb

AT W2A 1s square (2x2):

o (ATW2A)-1 exists 1f det(ATW2A) = 0
Assuming that (ATW2A)-! does exists:
(AT W2A)-1 (AT W2A) v = (AT W2A )1 AT W2b
v = (AT W2A)1 AT W2b



Observation

* This 1s a problem imnvolving two 1images BUT

— Can measure sensitivity by just looking at one of the
images!

— This tells us which pixels are easy to track, which are
hard

« very useful later on when we do feature tracking...



Revisiting the small motion assumption
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e [s this motion small enough?
— Probably not—it’s much larger than one pixel (2nd order terms dominate)
— How might we solve this problem?



[terative Refinement

 Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade
equations

2. Warp I(t-1) towards I(t) using the estimated flow field
- use image warping techniques

3. Repeat until convergence



Reduce the resolution!




Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels

u=>3 pixels

Gaussian pyramid of image I,
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Coarse to-fine optical flow estlmatlon
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Optical Flow Results
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Optical Flow Results
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