
Image Motion

Brightness Constancy Equation
Image intensity at Time = t, I(x, y, t)

Image intensity at Time = t + dt, I(x + dx, y + dy, t + dt)

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt

Taylor Series expansion

Assuming I(x, y, t) = I(x + dx, y + dy, t + dt)

Therefore,
I(x, y, t) = I(x, y, t) +

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = 0

Brightness Constancy Equation

Taking derivative wrt time:

∂I
∂x

dx +
∂I
∂y

dy +
∂I
∂t

dt = 0

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0

Let

(Frame spatial
gradient)

(optical flow)

∇I =
∂I
∂x
∂I
∂y

(derivative across
frames)

It =
∂I
∂t

d =
dx
dt
dy
dt

Brightness Constancy Equation

Becomes:

The OF is CONSTRAINED to be on a line !

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0

u

vIxu + Iyv + It = 0

v = −
Ix

Iy
u −

It

Iy

where, u =
dx
dt

; v =
dy
dt

Line equation −
It

Ix

−
It

Iy

d

P

d =
ft

f 2
x + f 2

y

(̂u, ̂v)

Brightness Constancy Equation

Becomes:

The OF is CONSTRAINED to be on a line !

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0

u

vIxu + Iyv + It = 0

v = −
Ix

Iy
u −

It

Iy

where, u =
dx
dt

; v =
dy
dt

Line equation −
It

Ix

−
It

Iy

d

P

d =
ft

f 2
x + f 2

y

(̂u, ̂v)

!8

Aperture Problem in Real Life

actual motion perceived motion

Solving the aperture problem

• How to get more equations for a pixel?
– Basic idea: impose additional constraints

• most common is to assume that the flow field is smooth locally
• one method: pretend the pixel’s neighbors have the same (u,v)

– If we use a 5x5 window, that gives us 25 equations per pixel!

Lukas-Kanade flow
• Prob: we have more equations than unknowns

– The summations are over all pixels in the K x K window
– This technique was first proposed by Lukas & Kanade (1981)

• Solution: solve least squares problem

– minimum least squares solution given by solution (in d)
of:

Taking a closer look at (ATA)

This is the same matrix we used for corner detection!

AT = [
Ix(p1) Ix(p2) … Ix(pN2)
Iy(p1) Iy(p2) … Iy(pN2)]

A =

Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

… …
Ix(pN2) Iy(pN2)

AT A = [
∑ I2

x ∑ IxIy

∑ IxIy ∑ I2
y]

Taking a closer look at (ATA)
The matrix for corner detection:

is singular (not invertible) when det(ATA) = 0

One e.v. = 0 -> no corner, just an edge
Two e.v. = 0 -> no corner, homogeneous region

Aperture
Problem !

But det(ATA) = ∏ λi = 0 -> one or both e.v. are 0

AT A = [
∑ I2

x ∑ IxIy

∑ IxIy ∑ I2
y]

Edge

– large gradients, all the same
– large λ1, small λ2

Low texture region

– gradients have small magnitude
– small λ1, small λ2

High textured region

– gradients are different, large magnitudes
– large λ1, large λ2

An improvement …

• NOTE:
– The assumption of constant OF is more likely to

be wrong as we move away from the point of
interest (the center point of Q)

Use weights to control
the influence of the
points: the farther
from p, the less weight

Solving for v with weights:
• Let W be a diagonal matrix with weights
• Multiply both sides of Av = b by W:

 W A v = W b
• Multiply both sides of WAv = Wb by (WA)T:

 AT WWA v = AT WWb
• AT W2A is square (2x2):

• (ATW2A)-1 exists if det(ATW2A) ≠ 0

• Assuming that (ATW2A)-1 does exists:
(AT W2A)-1 (AT W2A) v = (AT W2A)-1 AT W2b

v = (AT W2A)-1 AT W2b

Observation

• This is a problem involving two images BUT
– Can measure sensitivity by just looking at one of the

images!
– This tells us which pixels are easy to track, which are

hard
• very useful later on when we do feature tracking...

Revisiting the small motion assumption

• Is this motion small enough?
– Probably not—it’s much larger than one pixel (2nd order terms dominate)
– How might we solve this problem?

Iterative Refinement

• Iterative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade

equations
2. Warp I(t-1) towards I(t) using the estimated flow field

- use image warping techniques
3. Repeat until convergence

Reduce the resolution!

image Iimage H

Gaussian pyramid of image It-1 Gaussian pyramid of image It

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

image Iimage J

Gaussian pyramid of image It-1 Gaussian pyramid of image It

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

!24

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

!25

Optical Flow Results

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

