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What is an image?

* We can think of an image as a function, f, from R2 to R:
— f{ x, y ) gives the intensity at position (x, y)

* A color image is just three functions pasted together. We
can write this as a “vector-valued” function:

r(x,y)
J(x,y)=|g(x,))
b(x,y)



I(x,y)

Brightness values




What is a digital image?

In computer vision we usually operate on digital
(discrete) images:
— Sample the 2D space on a regular grid
— Quantize each sample (round to nearest integer)
If our samples are A apart, we can write this as:

fli ,j] = Quantize{ f(i A, j A) }
The image can now be represented as a matrix of
integer valljl.es

62 79 23 119 120 105 4 0
10 10 9 62 12 78 34 0

10 58 197 46 46 0 0 43
v | 176 135 5 188 191 68 0 49
2 1 1 29 26 37 0 77
0 89 144 147 187 102 62 208
255 2562 0 166 123 62 0 31
166 63 127 17 1 0 99 30




CLUSTERING

* Group a collection of points into clusters

 We have seen “supervised methods”, where the outcome (or
response) is based on various predictors.

* In clustering, we want to extract patterns on variables without
analyzing a specific response variable.

* This is a form of “unsupervised learning”




CLUSTERING

* The points in each cluster are closer to one another and far from
the points in other clusters.




DATA POINTS

* Each of the data points belong to some n-dimensional space.




DISSIMILARITY MEASUREMENTS

Given measurements x;; for i = 1,..., N observations over j = 1,..., p predictors.

Define dissimilarity, d.(x;, x;,)
 We can define dissimilarity between objects as

14
d(xi, xi') = Z dj(xij, X j)
j=1

* The most common distance measure is squared distance

2




DISSIMILARITY MEASUREMENTS

 Absolute difference
dixij Xirg) = X5 = i

e For categorical variables, we could set

dj(x.., X

J

1 otherwise




K-MEANS CLUSTERING

A commonly used algorithm to perform clustering

e Assumptions:
 Euclidean distance,
c 2
d(x;, x;) = Z (xij - xi'j)2 =[x — x| |
j=1

 K-means partitions observations into K clusters, with K
provided as a parameter.




K-MEANS CLUSTERING

* Given some clustering or partition, C, the cluster
assignment of observation, x; to cluster r e {1,....K} is
denoted as C()=«.

 K-means seeks to minimize a clustering criterion measuring
dissimilarity of observations assigned to each cluster




K-MEANS OBJECTIVE FUNCTION

* We want to minimize within-cluster dissimilarity.
K
- 112
UEDIDNIEEEAT
k=1 i=1

where x, is the centroid of the cluster k

* The criteria to minimize is the total distance given by each
observation to the mean(centroid) of the cluster to which the
observation is assigned.




K-MEANS - ITERATIVE ALGORITHM

1. Initialize by choosing K observations as centroids.

my, My, ..., My

2. Assign each observation i to the cluster with the nearest
centroid, i.e,

: 2
min | |x; — my||
1<k<K

3. Update centroids m, =,
4. Iterate steps 2 and 3 until convergence.




K-MEANS - CLASSIFIER

x,={r;, 8, b}

x,={ry 85 by}

x=(r, 8, b} >

Classifier
(K-Means)

Classification Results
x,—C(x))

x,—>C(x,)

x—>C(x;)

Cluster Parameters
m, for C,

m, for C,

m, for C,




Example

Application of k-means algorithm far calor-based image
segmentation [Bishop book[1] and its web site]

K-means clustering applied to the color vectors of pixels in RGB
color-gpace

Origina’ image

Fig 3[1]



Image Segmentation by K-Means

 Select a value of K

« Select a feature vector for every pixel (color,
texture, position, or combination of these etc.)

« Define a similarity measure between feature vectors
(Usually Euclidean Distance).

* Apply K-Means Algorithm.
* Apply Connected Components Algorithm.

* Merge any components of size less than some
threshold to an adjacent component that is most
similar to it.

* From Marc Pollefeys COMP 256 2003



Results of K-Means Clustering:

Image Clusters on intensity Clusters on color

K-means clustering using intensity alone and color alone

17
* From Marc Pollefeys COMP 256 2003



K means: Challenges

* Will converge
 But not to the global minimum of objective function

* Variations: search for appropriate number of clusters by
applying k-means with different k and comparing the results



K-means Variants

* Different ways to initialize the means

« Different stopping criteria

* Dynamic methods for determining the right number of clusters
(K) for a given image

« The EM Algorithm: a probabilistic formulation of K-means
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GAUSSIAN MIXTURE MODEL




Notation: Normal distribution 1D case

N(u , o) is a 1D normal (Gaussian) distribution with
mean u and standard deviation o (so the
variance is o2.

/T

F
Percent of I
Mormal \
Distribution \.
Scores in Each 1

Interval \
/ \

2.2 *2.2
a0 3.8% 31%| 34% 13.6% |, ‘ 29,

| .
-3 2 0 1 2

21



Notation: Normal distribution 1D case

N(u, o) is a 1D normal (Gaussian) distribution with
mean u and standard deviation o (so the
variance is o2.
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Distribution ‘a
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Multivariate Normal distribution

1 1 1 _—
N(x|pu,2) = — —expy ——(x—p) X (x — )
Q2n)z |2 2

x is a D dimensional vector

u is a D-dimensinal mean vector

> is a D x D covariance matrix
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Uni-modal dataset
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Multi-modal dataset




Multi-modal dataset
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Multi-modal dataset

p(x|u, o)
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Multi-modal dataset




Gaussian Mixtures Model

A linear combination of Gaussian distributions forms a
superposition

Formulated as a probabilistic model known as
mixture distribution
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Gaussian Mixtures Model



Gaussian Mixtures Model

K
p(x) = Y m (x| g Zy)
k=1



Gaussian Mixtures Model



Gaussian Mixtures Model

 WWe have a linear combination of several
Gaussians

« Each Gaussian is a cluster, one of K clusters

 Each cluster has a mean and covariance

* Mixing probability,



Gaussian Mixtures Model

Parameters - 4, 2, «

K
k=1

K
p(x) =) mN (x| g Zy)
k=1
1

Q)T |Z|?

1 Ts—1
N(x|p,2) = eXP{ —E(x—ﬂ) by (X—M)}

x is a D dimensional vector

u is a D-dimensinal mean vector

> is a D x D covariance matrix



Maximum Likelihood Estimate

11 1 e
N(x|pu,X) = - —expy ——(Xx—p) X7 (x —p)
Q) |22 2

D 1 1 Fe_l
ln/l/(xl,u,Z)z—Eanﬂ—Ean—E(x—,u) X (x— )

Once Optimal values of the parameters are found,

the solution will correspond to the Maximum Likelihood Estimate (MLE)



