
CLUSTERING / GAUSSIAN 
MIXTURE MODEL
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What is an image?
• We can think of an image as a function, f, from R2 to R: 

– f( x, y ) gives the intensity at position ( x, y )  
 

• A color image is just three functions pasted together.  We 
can write this as a “vector-valued” function: 
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Image Brightness values

I(x,y)



What is a digital image?

• In computer vision we usually operate on digital 
(discrete) images: 
– Sample the 2D space on a regular grid 
– Quantize each sample (round to nearest integer) 

• If our samples are Δ apart, we can write this as: 
•  f[i ,j] = Quantize{ f(i Δ, j Δ) } 
• The image can now be represented as a matrix of 

integer values



CLUSTERING
• Group a collection of points into clusters 

• We have seen “supervised methods”, where the outcome (or 
response) is based on various predictors. 

• In clustering, we want to extract patterns on variables without 
analyzing a specific response variable. 

• This is a form of “unsupervised learning”
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CLUSTERING
• The points in each cluster are closer to one another and far from 

the points in other clusters.
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DATA POINTS
• Each of the data points belong to some n-dimensional space.
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DISSIMILARITY MEASUREMENTS 

• We can define dissimilarity between objects as 

• The most common distance measure is squared distance 
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Define dissimilarity, dj(xij, xi′�j)

Given measurements xij for i = 1,…, N observations over j = 1,…, p predictors.

d(xi, xi′�) =
p

∑
j=1

dj(xij, xi′�j)

dj(xij, xi′�j) = (xij − xi′�j)2



DISSIMILARITY MEASUREMENTS 

• Absolute difference 

• For categorical variables, we could set 
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dj(xij, xi′�j) = |xij − xi′�j |

dj(xij, xi′�j) = 0 if xij = xi′�j

1 otherwise 



K-MEANS CLUSTERING
• A commonly used algorithm to perform clustering 

• Assumptions: 
• Euclidean distance,  

• K-means partitions observations into K clusters, with K 
provided as a parameter.
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d(xi, xi′�) =
p

∑
j=1

(xij − xi′�j)2 = | |xi − xi′�| |2



K-MEANS CLUSTERING
• Given some clustering or partition, C, the cluster 

assignment of observation,     to cluster                     is 
denoted as               . 

• K-means seeks to minimize a clustering criterion measuring 
dissimilarity of observations assigned to each cluster
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xi k ∈ {1,…, K}
C(i) = k



K-MEANS OBJECTIVE FUNCTION 

• We want to minimize within-cluster dissimilarity.  
 
 
 
 
 
where     is the centroid of the cluster k 

• The criteria to minimize is the total distance given by each 
observation to the mean(centroid) of the cluster to which the 
observation is assigned.
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W =
K

∑
k=1

N

∑
i=1

| |xik − x̄k | |2

x̄k



K-MEANS - ITERATIVE ALGORITHM 

1. Initialize by choosing K observations as centroids. 

2. Assign each observation i to the cluster with the nearest 
centroid, i.e,  

3. Update centroids  
4. Iterate steps 2 and 3 until convergence. 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m1, m2, …, mk

min
1≤k≤K

| |xi − mk | |2

mk = x̄k



Classifier 
(K-Means)

x1={r1, g1, b1}

x2={r2, g2, b2}

…

xi={ri, gi, bi}

…

Classification Results
x1→C(x1)
x2→C(x2)

…
xi→C(xi)

…

Cluster Parameters
m1 for C1

m2 for C2
…

mk for Ck

K-MEANS - CLASSIFIER 



Example



Image Segmentation by K-Means

• Select a value of K 
• Select a feature vector for every pixel (color, 

texture, position, or combination of these etc.) 
• Define a similarity measure between feature vectors 

(Usually Euclidean Distance). 
• Apply K-Means Algorithm. 
• Apply Connected Components Algorithm. 
• Merge any components of size less than some 

threshold to an adjacent component that is most 
similar to it.

* From Marc Pollefeys COMP 256 2003
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K-means clustering using intensity alone and color alone

Image Clusters on intensity Clusters on color

* From Marc Pollefeys COMP 256 2003

Results of K-Means Clustering:



K means: Challenges

• Will converge 
• But not to the global minimum of objective function 
• Variations: search for appropriate number of clusters by 

applying k-means with different k and comparing the results



K-means Variants

• Different ways to initialize the means 
• Different stopping criteria 
• Dynamic methods for determining the right number of clusters 

(K) for a given image 

• The EM Algorithm: a probabilistic formulation of K-means 
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GAUSSIAN MIXTURE MODEL
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Notation: Normal distribution 1D case
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N(µ , σ) is a 1D normal (Gaussian) distribution with 
              mean µ and standard deviation σ (so the 
              variance is σ2.  



Notation: Normal distribution 1D case
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N(µ , σ) is a 1D normal (Gaussian) distribution with 
              mean µ and standard deviation σ (so the 
              variance is σ2.  

𝒩(x |μ, σ2) =
1

(2πσ2)1
2

exp{ −
1

2σ2
(x − μ)2}



Multivariate Normal distribution
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𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

μ is a D-dimensinal mean vector

Σ is a D x D covariance matrix

x is a D dimensional vector



Uni-modal dataset



Multi-modal dataset



Multi-modal dataset



𝒩(x |μ, σ2) =
1

(2πσ2)1
2

exp{ −
1

2σ2
(x − μ)2}

Multi-modal dataset



Multi-modal dataset



Gaussian Mixtures Model
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A linear combination of Gaussian distributions forms a 
superposition  

Formulated as a  probabilistic model known as 
mixture distribution 



Gaussian Mixtures Model



Gaussian Mixtures Model

p(x) =
K

∑
k=1

πk𝒩(x |μk, Σk)



Gaussian Mixtures Model



Gaussian Mixtures Model

• We have a linear combination of several 
Gaussians 

• Each Gaussian is a cluster, one of K clusters 
 

• Each cluster has a mean and covariance 

• Mixing probability,  



Gaussian Mixtures Model

Parameters - μ, Σ, π

K

∑
k=1

πk = 1 0 ≤ πk ≤ 1

𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

μ is a D-dimensinal mean vector

Σ is a D x D covariance matrix

x is a D dimensional vector

;

p(x) =
K

∑
k=1

πk𝒩(x |μk, Σk)



Maximum Likelihood Estimate

𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

ln𝒩(x |μ, Σ) = −
D
2

ln 2π −
1
2

ln Σ −
1
2

(x − μ)TΣ−1(x − μ)

 Once Optimal values of the parameters are found, 

the solution will correspond to the Maximum Likelihood Estimate (MLE)


