CLUSTERING / GAUSSIAN MIXTURE MODEL

What is an image?

We can think of an image as a function, *f*, from R² to R:
- f(x, y) gives the intensity at position (x, y)

• A color image is just three functions pasted together. We can write this as a "vector-valued" function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

Image

Brightness values

I(x,y)

What is a digital image?

- In computer vision we usually operate on digital (discrete) images:
 - Sample the 2D space on a regular grid
 - Quantize each sample (round to nearest integer)
- If our samples are Δ apart, we can write this as:

•
$$f[i, j] = \text{Quantize} \{ f(i \Delta, j \Delta) \}$$

The image can now be represented as a matrix of integer values

18	
ю	

62	79	23	119	120	105	4	0
10	10	9	62	12	78	34	0
10	58	197	46	46	0	0	48
176	135	5	188	191	68	0	49
2	1	1	29	26	37	0	77
0	89	144	147	187	102	62	208
255	252	0	166	123	62	0	31
166	63	127	17	1	0	99	30

CLUSTERING

Group a collection of points into clusters

- We have seen "supervised methods", where the outcome (or response) is based on various predictors.
- In clustering, we want to extract patterns on variables without analyzing a specific response variable.
- This is a form of "unsupervised learning"

CLUSTERING

• The points in each cluster are closer to one another and far from the points in other clusters.

DATA POINTS

• Each of the data points belong to some n-dimensional space.

DISSIMILARITY MEASUREMENTS

Given measurements x_{ij} for i = 1, ..., N observations over j = 1, ..., p predictors.

Define dissimilarity, $d_j(x_{ij}, x_{i'j})$

• We can define dissimilarity between objects as

$$d(x_{i}, x_{i'}) = \sum_{j=1}^{p} d_{j}(x_{ij}, x_{i'j})$$

The most common distance measure is squared distance

$$d_j(x_{ij}, x_{i'j}) = (x_{ij} - x_{i'j})^2$$

DISSIMILARITY MEASUREMENTS

Absolute difference

$$d_j(x_{ij}, x_{i'j}) = |x_{ij} - x_{i'j}|$$

• For categorical variables, we could set

$$d_j(x_{ij}, x_{i'j}) = 0$$
 if $x_{ij} = x_{i'j}$

1 otherwise

K-MEANS CLUSTERING

- A commonly used algorithm to perform clustering
- Assumptions:
 - Euclidean distance,

$$d(x_i, x_{i'}) = \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2 = ||x_i - x_{i'}||^2$$

 K-means partitions observations into K clusters, with K provided as a parameter.

K-MEANS CLUSTERING

- Given some clustering or partition, C, the cluster assignment of observation, x_i to cluster k ∈ {1,...,K} is denoted as C(i) = k.
- K-means seeks to minimize a clustering criterion measuring dissimilarity of observations assigned to each cluster

K-MEANS OBJECTIVE FUNCTION

• We want to minimize within-cluster dissimilarity.

$$W = \sum_{k=1}^{K} \sum_{i=1}^{N} ||x_{ik} - \bar{x}_k||^2$$

where \bar{x}_k is the centroid of the cluster k

 The criteria to minimize is the total distance given by each observation to the mean(centroid) of the cluster to which the observation is assigned.

K-MEANS - ITERATIVE ALGORITHM

1. Initialize by choosing K observations as centroids.

 $m_1, m_2, ..., m_k$

2. Assign each observation i to the cluster with the nearest centroid, i.e,

 $\min_{1 \le k \le K} ||x_i - m_k||^2$

3. Update centroids $m_k = \bar{x}_k$ 4. Iterate steps 2 and 3 until convergence.

K-MEANS - CLASSIFIER

Example

Application of k-means algorithm for color-based image segmentation [Bishop book[1] and its web site] K-means clustering applied to the color vectors of pixels in RGB color-space

Fig. 3 [1]

Image Segmentation by K-Means

- Select a value of K
- Select a feature vector for every pixel (color, texture, position, or combination of these etc.)
- Define a similarity measure between feature vectors (Usually Euclidean Distance).
- Apply K-Means Algorithm.
- Apply Connected Components Algorithm.
- Merge any components of size less than some threshold to an adjacent component that is most similar to it.

Results of K-Means Clustering:

Image

Clusters on intensity

Clusters on color

K-means clustering using intensity alone and color alone

K means: Challenges

- Will converge
- But not to the global minimum of objective function
- Variations: search for appropriate number of clusters by applying k-means with different k and comparing the results

K-means Variants

- Different ways to initialize the means
- Different stopping criteria
- Dynamic methods for determining the right number of clusters (K) for a given image
- The EM Algorithm: a probabilistic formulation of K-means

GAUSSIAN MIXTURE MODEL

Notation: Normal distribution 1D case

N(μ , σ) is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .

Notation: Normal distribution 1D case

N(μ , σ) is a 1D normal (Gaussian) distribution with mean μ and standard deviation σ (so the variance is σ^2 .

Multivariate Normal distribution

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

x is a D dimensional vector

- μ is a D-dimensinal mean vector
- Σ is a D x D covariance matrix

Uni-modal dataset

A linear combination of Gaussian distributions forms a superposition

Formulated as a probabilistic model known as mixture distribution

- We have a linear combination of several Gaussians
- Each Gaussian is a cluster, one of K clusters

• Each cluster has a mean and covariance

• Mixing probability,

Parameters - μ , Σ , π

$$\sum_{k=1}^{K} \pi_k = 1 \qquad ; \qquad 0 \le \pi_k \le 1$$

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x \mid \mu_k, \Sigma_k)$$
$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

x is a D dimensional vector

 μ is a D-dimensinal mean vector

 $\boldsymbol{\Sigma}$ is a D x D covariance matrix

Maximum Likelihood Estimate

$$\mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{\frac{D}{2}}} \frac{1}{|\Sigma|^{\frac{1}{2}}} exp\left\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right\}$$

$$\ln \mathcal{N}(x \,|\, \mu, \Sigma) = -\frac{D}{2} \ln 2\pi - \frac{1}{2} \ln \Sigma - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu)$$

Once Optimal values of the parameters are found,

the solution will correspond to the Maximum Likelihood Estimate (MLE)