
EXPECTATION MAXIMIZATION
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Notation: Normal distribution 1D case
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N(µ , σ) is a 1D normal (Gaussian) distribution with 
              mean µ and standard deviation σ (so the 
              variance is σ2.  



Notation: Normal distribution 1D case
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N(µ , σ) is a 1D normal (Gaussian) distribution with 
              mean µ and standard deviation σ (so the 
              variance is σ2.  

𝒩(x |μ, σ2) =
1

(2πσ2)1
2

exp{ −
1

2σ2
(x − μ)2}



Multivariate Normal distribution
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𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

μ is a D-dimensinal mean vector

Σ is a D x D covariance matrix

x is a D dimensional vector



Uni-modal dataset



Multi-modal dataset



Multi-modal dataset



𝒩(x |μ, σ2) =
1

(2πσ2)1
2

exp{ −
1

2σ2
(x − μ)2}

Multi-modal dataset



Multi-modal dataset



Gaussian Mixtures Model
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A linear combination of Gaussian distributions forms a 
superposition  

Formulated as a  probabilistic model known as 
mixture distribution 



Gaussian Mixtures Model



Gaussian Mixtures Model

p(x) =
K

∑
k=1

πk𝒩(x |μk, Σk)



Gaussian Mixtures Model



Gaussian Mixtures Model

• We have a linear combination of several 
Gaussians 

• Each Gaussian is a cluster, one of K clusters 
 

• Each cluster has a mean and covariance 

• Mixing probability,  



Gaussian Mixtures Model

Parameters - μ, Σ, π

K

∑
k=1

πk = 1 0 ≤ πk ≤ 1

𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

μ is a D-dimensinal mean vector

Σ is a D x D covariance matrix

x is a D dimensional vector

;

p(x) =
K

∑
k=1

πk𝒩(x |μk, Σk)



Maximum Likelihood Estimate

𝒩(x |μ, Σ) =
1

(2π)D
2

1

|Σ |
1
2

exp{ −
1
2

(x − μ)TΣ−1(x − μ)}

ln𝒩(x |μ, Σ) = −
D
2

ln 2π −
1
2

ln Σ −
1
2

(x − μ)TΣ−1(x − μ)

 Once Optimal values of the parameters are found, 

the solution will correspond to the Maximum Likelihood Estimate (MLE)



Maximum Likelihood Estimate

 For a point, xi, let the cluster to which that point belongs be labeled zk

z is a K-dimensional binary random variable having 1-of-K representation, 

 A particular element zk is equal to 1 and all other elements are equal to 0

 values of zk,  satisfy

zk ∈ {0,1} ∑
k

zk = 1

p(z) =
K

∏
k=1

π zk
k



Maximum Likelihood Estimate

 The conditional distribution of x,  given a particular value for z,

 is a Gaussian

p(x |zk = 1) = 𝒩(x |μk, Σk)

p(x |z) =
K

∏
k=1

𝒩(x |μk, Σk)zk

Our goal: what is the probability of z given our observation x?

p(z |x)?



Maximum Likelihood Estimate

Our goal: what is the probability of z given our observation x?

The joint distribution, P(x, z),  is given by p(z)p(x |z)

The marginal distribution of x,  is obtained by summing the joint distribution 
 over all possible states of z,  to give

p(x) = ∑
z

p(z)p(x |z) =
K

∑
k=1

πk𝒩(x |μk, Σk)

 It means that, for every observed data point xi,
 there is a corresponding latent variable zi



Maximum Likelihood Estimate

 Conditional probability of, zk given xk,  is represented by Bayes' theorem

p(zk = 1 |x) =
p(zk = 1)p(x |zk = 1)
K
∑
i=1

p(zi = 1)p(x |zi = 1)

=
πk𝒩(x |μk, Σk)
K
∑
i=1

πi𝒩(x |μi, Σi)

p(x) = ∑
z

p(z)p(x |z) =
K

∑
k=1

πk𝒩(x |μk, Σk)

πk is the prior probability of zk = 1



Maximum Likelihood Estimate

 Conditional probability of, zk given xk,  is represented by Bayes' theorem

p(zk = 1 |x) =
p(zk = 1)p(x |zk = 1)
K
∑
i=1

p(zi = 1)p(x |zi = 1)

=
πk𝒩(x |μk, Σk)
K
∑
i=1

πi𝒩(x |μi, Σi)

p(x) = ∑
z

p(z)p(x |z) =
K

∑
k=1

πk𝒩(x |μk, Σk)

πk is the prior probability of zk = 1

p(zk = 1 |x) is the posterior probability 



Maximum Likelihood Estimate

p(x) = ∑
z

p(z)p(x |z) =
K

∑
k=1

πk𝒩(x |μk, Σk)

Data set of observations {x1, …, xN}

X is an N × D matrix

Z is an N × K matrix of latent variables

Assumption: Data points are drawn independently from the distribution

p(X |π, μ, Σ) =
n

∏
i=1

p(xi) =
n

∏
i=1

K

∑
k=1

πk𝒩(xi |μk, Σk)

 The log likelihood is given by: 

ln p(X |π, μ, Σ) =
n

∑
i=1

ln
K

∑
k=1

πk𝒩(xi |μk, Σk)



Maximum Likelihood Estimate

 The log likelihood is given by: 

ln p(X |π, μ, Σ) =
n

∑
i=1

ln
K

∑
k=1

πk𝒩(xi |μk, Σk)

𝒩(xi |μk, Σk) =
1

(2π)D
2

1

|Σk |
1
2

exp{ −
1
2

(xi − μk)TΣ−1
k (xi − μk)}



Expectation Maximization 

 For lack of a closed form solution 

ln p(X |π, μ, Σ) =
n

∑
i=1

ln
K

∑
k=1

πk𝒩(xi |μk, Σk)

We will use an iterative technique
Step1 −  Choose some initial values for the means, covariances 

 and mixing coefficients, evaluate log likelihood
Step2

E-step: Use current values for the parameters to evaluate
the posterior probabilities

γ(zik) = p(zk = 1 |xi) =
p(zk = 1)p(xi |zk = 1)
K
∑
j=1

p(zj = 1)p(xi |zj = 1)

=
πk𝒩(xi |μk, Σk)
K
∑
j=1

πj𝒩(xi |μj, Σj)



Expectation Maximization 

M-step: re-estimate means, covariances and mixing coefficients

μnew
k =

1
Nk

N

∑
i=1

γ(zik)xi

Σnew
k =

1
Nk

N

∑
i=1

γ(zik)(xi − μnew
k )(xi − μnew

k )T

πnew
k =

Nk

N where Nk =
N

∑
i=1

γ(zik)

−Evaluate the log likelihood

Step3

Step4

ln p(X |π, μ, Σ) =
n

∑
i=1

ln
K

∑
k=1

πk𝒩(xi |μk, Σk)


