
SNAKES!
Python is an interpreted, dynamically-typed, high-level,
garbage-collected, object-oriented-functional-imperative, and
widely used scripting language.
• Interpreted: instructions executed without being compiled into

(virtual) machine instructions*
• Dynamically-typed: verifies type safety at runtime
• High-level: abstracted away from the raw metal and kernel
• Garbage-collected: memory management is automated
• OOFI: you can do bits of OO, F, and I programming
Not the point of this class!
• Python is fast (developer time), intuitive, and used in industry!

!1*you can compile Python source, but it’s not required

THE ZEN OF PYTHON
• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren't special enough to break the rules …
• … although practicality beats purity.
• Errors should never pass silently …
• … unless explicitly silenced.

!2Thanks: SDSMT ACM/LUG

LITERATE
PROGRAMMING
Literate code contains in one document:
• the source code;
• text explanation of the code; and
• the end result of running the code.
Basic idea: present code in the order that logic and flow of
human thoughts demand, not the machine-needed ordering
• Necessary for data science!
• Many choices made need textual explanation, ditto results.

!3

10-MINUTE PYTHON
PRIMER
Define a function:

Python is whitespace-delimited
Define a function that returns a tuple:

!4

def my_func(x, y):
if x > y:

return x
else:

return y

def my_func(x, y):
return (x-1, y+2)

(a, b) = my_func(1, 2)

a = 0; b = 4

USEFUL BUILT-IN FUNCTIONS:
COUNTING AND ITERATING
len: returns the number of items of an enumerable object

range: returns an iterable object

enumerate: returns iterable tuple (index, element) of a list

 

https://docs.python.org/3/library/functions.html

len([‘c’, ‘m’, ‘s’, ‘c’, 3, 2, 0])

7

list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

enumerate([“311”, “320”, “330”])

[(0, “311”), (1, “320”), (2, “330”)]

!5

https://docs.python.org/3/library/functions.html

USEFUL BUILT-IN FUNCTIONS:
MAP AND FILTER
map: apply a function to a sequence or iterable
 

filter: returns a list of elements for which a predicate is true

We’ll go over in much greater depth with pandas/numpy.

!6

arr = [1, 2, 3, 4, 5]
map(lambda x: x**2, arr)

[1, 4, 9, 16, 25]

arr = [1, 2, 3, 4, 5, 6, 7]
filter(lambda x: x % 2 == 0, arr)

[2, 4, 6]

PYTHONIC
PROGRAMMING
Basic iteration over an array in Java:

Direct translation into Python:

A more “Pythonic” way of iterating:

idx = 0
while idx < len(arr):

print(arr[idx]); idx += 1

int[] arr = new int[10];
for(int idx=0; idx<arr.length; ++idx) {

System.out.println(arr[idx]);
}

for element in arr:
print(element)

!7

LIST COMPREHENSIONS
Construct sets like a mathematician!
• P = { 1, 2, 4, 8, 16, …, 216 }
• E = { x | x in ℕ and x is odd and x < 1000 }
Construct lists like a mathematician who codes!

Very similar to map, but:
• You’ll see these way more than map in the wild
• Many people consider map/filter not “pythonic”
• They can perform differently (map is “lazier”)

!8

P = [2**x for x in range(17)]

E = [x for x in range(1000) if x % 2 != 0]

EXCEPTIONS
Syntactically correct statement throws an exception:
• tweepy (Python Twitter API) returns “Rate limit exceeded”
• sqlite (a file-based database) returns IntegrityError

!9

print('Python', python_version())

try:
cause_a_NameError

except NameError as err:
print(err, '-> some extra text')

PYTHON 2 VS 3
Python 3 is intentionally backwards incompatible
• (But not that incompatible)
Biggest changes that matter for us:
• print “statement” ! print(“function”)
• 1/2 = 0 ! 1/2 = 0.5 and 1//2 = 0
• ASCII str default ! default Unicode
Namespace ambiguity fixed:

i = 1
[i for i in range(5)]
print(i) # ????????

!10

TO ANY CURMUDGEONS …
If you’re going to use Python 2 anyway, use the _future_
module:
• Python 3 introduces features that will throw runtime errors in

Python 2 (e.g., with statements)
• _future_ module incrementally brings 3 functionality into 2
• https://docs.python.org/2/library/__future__.html
 
from _future_ import division

from _future_ import print_function

from _future_ import please_just_use_python_3

!11

EXTRA RESOURCES
Plenty of tutorials on the web:
• https://www.learnpython.org/

!12

