

The Activity class
The Task Backstack
The Activity lifecycle
Starting an Activity

Handling configuration changes

Provides a visual interface for user interaction
Each Activity typically supports one focused thing
a user can do, such as

Viewing an email message

Showing a login screen

Applications often comprise several Activities
User interaction results in navigating across these
Activities

Tasks
The Task Backstack
Suspending and resuming Activities

A set of related Activities
These Activities can be from different applications

Most Tasks start at the home screen

When an Activity is launched, it goes on top of the
backstack
When the Activity is destroyed, it is popped off the
backstack

Activity 1
Activity 2
Activity 3

Activity 1 Activity 2 Activity 3

Task Backstack

Activities are created, suspended, resumed and
destroyed as necessary when an application executes

Some of these actions depend on user behavior
e.g., User hits back button

Some depend on Android
e.g., Android can kill Activities when it needs their resources

Resumed/Running—Visible, user interacting
Paused—Visible, user not interacting, can be
terminated
Stopped—Not visible, can be terminated

Android announces Activity lifecycle state
changes to Activities by calling specific Activity
methods

protected open fun onCreate(savedInstanceState: Bundle?): Unit

protected open fun onStart(): Unit

protected open fun onResume(): Unit

protected open fun onPause(): Unit

protected open fun onRestart(): Unit

protected open fun onStop(): Unit

protected open fun onDestroy(): Unit

Entire
Lifetime

Visible

Visible & in
Foreground

MapLocation

Called when Activity is created
Sets up initial state

Call super.onCreate()

Set the Activity’s content view

Retain references to UI views as necessary

Configure views as necessary

class MapLocation : Activity() {
companion object {

const val TAG = "MapLocation"
}

// UI elements
private lateinit var addrText: EditText
private lateinit var button: Button

override fun onCreate(savedInstanceState: Bundle?) {
/* Required call through to Activity.onCreate()
Restore any saved instance state, if necessary */
super.onCreate(savedInstanceState)

// Set content view
setContentView(R.layout.main)

// Initialize UI elements
addrText = findViewById(R.id.location)
button = findViewById(R.id.mapButton)
// Link UI elements to actions in code
button.setOnClickListener { processClick() }

}
// Called when user clicks the Show Map button
private fun processClick() {

try {
// Process text for network transmission
var address = addrText.text.toString()
address = address.replace(' ', '+')

// Create Intent object for starting Google Maps application
val geoIntent = Intent(Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=$address"))

if (packageManager.resolveActivity(geoIntent, 0) != null) {
// Use the Intent to start Google Maps application using
// Activity.startActivity()

startActivity(geoIntent)
}

} catch (e: Exception) {
// Log any error messages to LogCat using Log.e()
Log.e(TAG, e.toString())

}
}

Activity is about to become visible
Typical actions

Start when visible-only behaviors

Loading persistent application state

Activity is visible and about to start interacting
with user
Typical actions

Start foreground-only behaviors

Focus about to switch to another Activity
Typical actions

Shutdown foreground-only behaviors

Save persistent state

Activity is no longer visible to user
may be restarted later

Typical actions
Save persistent state
Do CPU-intensive save procedures

Note: Pre-Honeycomb - this method may not be
called if Android kills your application

Called if the Activity has been stopped and is
about to be started again
Typical actions

Special processing needed only after having been
stopped

Activity is about to be destroyed
Typical actions

Release Activity-wide resources

Note: may not be called if Android kills your
application

override fun onStart() {
super.onStart()
Log.i(TAG, "The activity is visible and about to be started.")

}

override fun onRestart() {
super.onRestart()
Log.i(TAG, "The activity is visible and about to be restarted.")

}

override fun onResume() {
super.onResume()
Log.i(TAG,
"The activity is visible and has focus (it is now \"resumed\")")

}

override fun onPause() {
super.onPause()
Log.i(TAG, "Another activity is taking focus (this activity is about
to be \"paused\")")

}

override fun onStop() {
super.onStop()
Log.i(TAG, "The activity is no longer visible (it is now \"stopped\")")

}

override fun onDestroy() {
super.onDestroy()
Log.i(TAG, "The activity is about to be destroyed.")

}
}

Create an Intent object matching the Activity to
start

Pass newly created Intent to methods, such as:
startActivity()
startActivityForResult()

Invokes a callback method, onActivityResult(), when the
called Activity finishes to return a result to the calling
Activity

// Called when user clicks the Show Map button
private fun processClick() {

try {
…

// Create Intent object for starting Google Maps application
val geoIntent = Intent(Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=$address"))

if (packageManager.resolveActivity(geoIntent, 0) != null) {
// Use the Intent to start Google Maps application using
// Activity.startActivity()

startActivity(geoIntent)
}

Similar to MapLocation, but gets address from
Contacts database

MapLocation
FromContacts

private fun startContactsApp() {

// Create Intent object for picking data from
// Contacts database
val intent = Intent(Intent.ACTION_PICK)
intent.type = CONTENT_ITEM_TYPE

if (packageManager.resolveActivity(intent, 0) != null) {
// Use intent to start Contacts application
// Variable PICK_CONTACT_REQUEST identifies this operation
startActivityForResult(intent, PICK_CONTACT_REQUEST)

}
}

The started Activity can set its result by calling
Activity.setResult()

fun setResult(resultCode: Int): Unit

fun setResult(resultCode: Int, data: Intent!): Unit

resultCode - an Int
RESULT_CANCELED

RESULT_OK

RESULT_FIRST_USER
Custom resultCodes can be added

override fun onActivityResult(requestCode: Int, resultCode: Int, data: Intent){

if (resultCode == RESULT_OK && requestCode == PICK_CONTACT_REQUEST) {
…

if (null != formattedAddress) {
…

// Create Intent object for starting Google Maps application
val geoIntent = Intent(Intent.ACTION_VIEW,

Uri.parse("geo:0,0?q=$formattedAddress"))
// Use the Intent to start Google Maps application using
//Activity.startActivity()

startActivity(geoIntent)
}

}
…

Keyboard, orientation, locale, etc.
Device configuration can change at runtime
On configuration changes, Android usually kills the
current Activity & then restarts it

Activity restarting should be fast
Options

Save Activity state in Bundle

Retain an separate Object

Manually handle the configuration change

Android saves some information such as View
state in a Bundle
You must save other state yourself

Android calls onSaveInstanceState(Bundle)
after onStop() for API 28+
before onStop() for API <28

Save Activity instance state to system-provided
Bundle

When Activity is restarted, you can restore Activity
state from a system-provided Bundle
In onCreate(Bundle)
In onRestoreInstanceState(Bundle), which is
called between onStart() and onPostCreate()

Ticker

class TickerDisplayActivity : Activity() {
companion object {

private const val COUNTER_KEY = "COUNTER_KEY"
private const val DELAY: Long = 1000

}

private lateinit var mCounterView: TextView
private lateinit var mUpdater: Runnable
private var mCounter = 0

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContentView(R.layout.activity_ticker_display)

mCounterView = findViewById(R.id.counter)

savedInstanceState?.let { mCounter = it.getInt(COUNTER_KEY) }

…
}

// Save instance state
public override fun onSaveInstanceState(bundle: Bundle) {

// Save mCounter value
bundle.putInt(COUNTER_KEY, mCounter)

// call superclass to save any view hierarchy
super.onSaveInstanceState(bundle)

}

Hard to recompute data can be cached to speed
up handling of configuration changes
Current recommendation is to store state in a
Fragment
We’ll come back to this in a later lesson

Can prevent system from restarting Activity
Declare the configuration changes your Activity
handles in AndroidManifest.xml file, e.g.,
<activity android:name=".MyActivity“

android:configChanges=
"orientation|screensize|keyboardHidden”…>

When configuration changes,
Activity’ s onConfigurationChanged() method is
called
Passed a Configuration object specifying the new
device configuration

Should generally avoid manual approach
Hard to get right

Fragile to system changes

The Intent Class

MapLocation
MapLocationFromContacts
Ticker

