

The BroadcastReceiver Class
Registering for events
Broadcasting events
Processing events

Base class for components that receive and react
to events

BroadcastReceivers register to receive events in
which they are interested

When Events occur at runtime they are
represented as Intents
Those Intents are then broadcast to the system

Android routes the Intents to BroadcastReceivers
that have registered to receive them
BroadcastReceivers receive the Intent via a call to
onReceive()

Register BroadcastReceivers to receive specific
events
When event occurs, broadcast an Intent
Android delivers Intent to registered recipients by
calling their onReceive() method
Event handled in onReceive()

BroadcastReceivers can register in two ways
Statically, in AndroidManifest.XML

Dynamically, by calling a registerReceiver() method

Put <receiver> and <intent-filter> tags in
AndroidManifest.xml

<receiver

android:enabled=["true" | "false"]

android:exported=["true" | "false"]

android:icon="drawable resource"

android:label="string resource"

android:name="string"

android:permission="string"

android:process="string" >

. . .

</receiver>

Specify <intent-filter> tag within a <receiver>
See lecture on Intent class

Receivers can be registered in
AndroidManifest.xml
Will be woken to receive broadcasts, if needed
In API 26+, statically registered receivers cannot
receive most implicit intents
See: https://developer.android.com/guide/

components/broadcast-exceptions.html

BcastRec
SinBcast
StatReg

<receiver
android:name=".Receiver"
android:exported="false"
android:permission="android.permission.VIBRATE">
<intent-filter>
<action android:name="course.examples.broadcastreceiver.

singlebroadcaststaticregistration.SHOW_TOAST" />
</intent-filter>

</receiver>

class SimpleBroadcastActivity : Activity() {
…
private const val CUSTOM_INTENT= "course.examples.broadcastreceiver.

singlebroadcaststaticregistration.SHOW_TOAST”
…

fun onClick(view: View) {
Log.i(TAG, "Broadcast sent")
val intent = Intent(CUSTOM_INTENT)
intent.setPackage("course.examples.broadcastreceiver.

singlebroadcaststaticregistration")
sendBroadcast(intent, Manifest.permission.VIBRATE)
}

}

class Receiver : BroadcastReceiver() {
override fun onReceive(context: Context, intent: Intent) {
Log.i(TAG, "Broadcast Received")
val vibrator = context

.getSystemService(Context.VIBRATOR_SERVICE) as Vibrator
vibrator.vibrate(VibrationEffect.createOneShot(500,

VibrationEffect.DEFAULT_AMPLITUDE))
Toast.makeText(context, "Broadcast Received by Receiver",

Toast.LENGTH_LONG).show()
}

}

Create an IntentFilter

Create a BroadcastReceiver

Register BroadcastReceiver using registerReceiver()
LocalBroadcastManager

Context

Call unRegisterReceiver() to unregister
BroadcastReceiver

BcastRec
SinBcast
DynReg

class SingleBroadcastActivity : Activity() {
companion object {
private const val CUSTOM_INTENT ="course.examples.broadcastreceiver.

singlebroadcastdynamicregistration.SHOW_TOAST"
}
private val intentFilter = IntentFilter(CUSTOM_INTENT)
private val receiver = Receiver()
private lateinit var mBroadcastMgr: LocalBroadcastManager

public override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

mBroadcastMgr = LocalBroadcastManager.getInstance(applicationContext)
setContentView(R.layout.main)
}

// Called when Button is clicked
fun onClick(v: View) {

mBroadcastMgr.sendBroadcast(
Intent(CUSTOM_INTENT).setFlags(Intent.FLAG_DEBUG_LOG_RESOLUTION))

}

override fun onStart() {
super.onStart()
mBroadcastMgr.registerReceiver(receiver, intentFilter)

}

override fun onStop() {
mBroadcastMgr.unregisterReceiver(receiver)
super.onStop()

}
}

BcastRec
CompBcast

…
private const val CUSTOM_INTENT = "course.examples.broadcastreceiver.

compoundbroadcast.SHOW_TOAST"
private val mIntentFilter = IntentFilter(CUSTOM_INTENT)
…
fun onClick(v: View) {

val intent = Intent(CUSTOM_INTENT).setPackage(packageName)
.setFlags(Intent.FLAG_DEBUG_LOG_RESOLUTION)

sendBroadcast(intent, Manifest.permission.VIBRATE)
}

override fun onStart() {
super.onStart()
registerReceiver(mReceiver1, mIntentFilter)

}

override fun onStop() {
unregisterReceiver(mReceiver1)
super.onStop()

}
}

<receiver
android:name=".Receiver3"
android:exported="false">
<intent-filter>
<action android:name="course.examples.broadcastreceiver.

compoundbroadcast.SHOW_TOAST" />
</intent-filter>

</receiver>

<receiver
android:name=".Receiver2"
android:exported="false">
<intent-filter>
<action android:name="course.examples.broadcastreceiver.

compoundbroadcast.SHOW_TOAST" />
</intent-filter>

</receiver>

Multiple broadcast methods supported
Normal vs. Ordered

Normal: processing order undefined

Ordered: sequential processing in priority order

Log extra Intent resolution information
Intent.setFlag(FLAG_DEBUG_LOG_RESOLUTION)

List registered BroadcastReceivers
Dynamically registered

% adb shell dumpsys activity b

Statically registered
% adb shell dumpsys package

Intents are delivered to BroadcastReceiver by
calling onReceive(Context, Intent)

The Context in which the receiver is running

The Intent that was broadcast

Hosting process has high priority while
onReceive() is executing
onReceive() runs on the main Thread
So onReceive should be short-lived

Note: If event handling is lengthy, consider
starting a Service, rather than performing
complete operation in onReceive()
Will cover the Service class later in the course

BroadcastReceiver is not considered valid once
onReceive() returns
Normally, BroadcastReceivers can’t start
asynchronous operations

e.g., showing a Dialog, starting an Activity via
startActivityForResult()

// send Intent to BroadcastReceivers in priority order

void sendOrderedBroadcast (Intent intent, String receiverPermission)

// send Intent to BroadcastReceivers in priority order. Includes multiple
// parameters for greater control

void sendOrderedBroadcast (Intent intent,
String receiverPermission,
BroadcastReceiver resultReceiver,
Handler scheduler,
int initialCode,
String initialData,
Bundle initialExtras)

BcastRec
CompOrd

Bcast

<receiver
android:name=".Receiver2"
android:exported="false">
<intent-filter android:priority="1">
<action android:name="course.examples.BroadcastReceiver.

compoundorderedbroadcast.SHOW_TOAST" />
</intent-filter>

</receiver>
<receiver
android:name=".Receiver3"
android:exported="false">
<intent-filter android:priority="10">
<action android:name="course.examples.BroadcastReceiver.

compoundorderedbroadcast.SHOW_TOAST" />
</intent-filter>

</receiver>

fun onClick(v: View) {
sendOrderedBroadcast(

Intent(CUSTOM_INTENT).setPackage(packageName).setFlags(
Intent.FLAG_DEBUG_LOG_RESOLUTION),

android.Manifest.permission.VIBRATE)
}
override fun onStart() {

super.onStart()
val intentFilter = IntentFilter(CUSTOM_INTENT)
intentFilter.priority = 3
registerReceiver(mReceiver, intentFilter)

}
override fun onStop() {

unregisterReceiver(mReceiver)
super.onStop()

}

class Receiver1 : BroadcastReceiver() {
…
override fun onReceive(context: Context, intent: Intent) {

Log.i(TAG, "INTENT RECEIVED")

if (isOrderedBroadcast) {
Log.i(TAG, "Calling abortBroadcast()")
abortBroadcast()

}
}

}

BcastRecCompOrd
BcastWithResRec

fun onClick(v: View) {
sendOrderedBroadcast(Intent(CUSTOM_INTENT).setPackage(packageName),

null, object : BroadcastReceiver() {
override fun onReceive(context: Context, intent: Intent) {

Toast.makeText(context, "Final Result is $resultData",
Toast.LENGTH_LONG).show()

}
}, null, 0, null, null)

}

class Receiver3 : BroadcastReceiver() {

…
override fun onReceive(context: Context, intent: Intent) {

Log.i(TAG, "INTENT RECEIVED by Receiver3")

val tmp = if (resultData == null) "" else resultData
resultData = "$tmp:Receiver 3"

}
}

After onReceive() exits, system can kill
BroadcastReceiver

Don’t’ start long-running Threads from onReceive()

Options
Call goAsync()

Schedule a JobService with JobScheduler. (Will discuss
Services later in course)

BroadcastReceiver is generally valid only until
onReceive() exits

Use goAsync() to allow asynchronous processing
from onReceive()

Method returns an object of PendingResult

Receiver considered alive until PendingResult.finish()

BcastRecGoAsync

override fun onReceive(context: Context, intent: Intent) {
Log.i(TAG, "Broadcast Received")

val pendingResult = goAsync()

GlobalScope.launch(context = Dispatchers.Main) {
delay(7000)
Toast.makeText(context,
"Broadcast Received by Receiver", Toast.LENGTH_LONG).show()

pendingResult.finish()
}

}

BroadcastReceiver’s original design has changed
to improve security, performance and UX

Prefer LocalBroadcastManager to Context

Prefer Context registration over Manifest registration

Don’t put sensitive info in implicit Intents you broadcast

Don’t start Activities from onReceive()

User Notifications

BcastRecSinBcastStatReg
BcastRecSinBcastDynReg
BcastRecCompBcast
BcastRecCompOrdBcast

BcastRecCompOrdBcastWithResRec
BcastRecGoAsync

