Date: January 4, 2018

Check the latex file and find out how macros are used to display basic quantum objects!

Quantum States. The state space \mathcal{A} of m-qubit is the complex Euclidean space \mathbb{C}^{2^m} . An m-qubit quantum state is represented by a density operator ρ , i.e., a positive semidefinite operator over \mathcal{A} with trace 1. The set of all quantum states in \mathcal{A} is denoted by Dens (\mathcal{A}) .

Let L(A) denote the set of all linear operators on space A. The Hilbert-Schmidt inner product on L(A) is defined by $\langle X, Y \rangle = \operatorname{tr}(X^*Y)$, for all $X, Y \in L(A)$, where X^* is the adjoint conjugate of X. Let $\operatorname{id}_{\mathcal{X}}$ denote the identity operator over \mathcal{X} , which might be omitted from the subscript if it is clear in the context. An operator $U \in L(\mathcal{X})$ is a unitary if $UU^* = U^*U = \operatorname{id}_{\mathcal{X}}$. The set unitary operations over \mathcal{X} is denoted by $U(\mathcal{X})$.

For a multi-partite state, e.g. $\rho_{ABC} \in \text{Dens}(\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C})$, its reduced state on some subsystem(s) is represented by the same state with the corresponding subscript(s). For example, the reduced state on \mathcal{A} system of ρ_{ABC} is $\rho_A = \text{tr}_{\mathcal{BC}}(\rho_{ABC})$, and $\rho_{AB} = \text{tr}_{\mathcal{C}}(\rho_{ABC})$. When all subscript letters are omitted, the notation represents the original state (e.g., $\rho = \rho_{ABE}$).

A classical-quantum-, or cq-state $\rho \in \text{Dens}(\mathcal{A} \otimes \mathcal{B})$ indicates that the \mathcal{A} subsystem is classical and \mathcal{B} is quantum. Likewise for ccq-, etc., states. We use lower case letters to denote specific values assignment to the classical part of a state. For example, any cq-state $\rho_{AB} = \sum_a p_a |a\rangle\langle a| \otimes \rho_B^a$ in which $p_a = \mathbf{Pr}[A=a]$ and ρ_B^a is a normalized state.

Distance Measures. For any $X \in L(A)$ with singular values $\sigma_1, \dots, \sigma_d$, where $d = \dim(A)$, the trace norm of A is $\|X\|_{\operatorname{tr}} = \sum_{i=1}^d \sigma_i$.

The trace distance between two quantum states ρ_0 and ρ_1 is defined to be

$$|\rho_0 - \rho_1|_{\rm tr} \stackrel{\text{def}}{=} \frac{1}{2} \|\rho_0 - \rho_1\|_{\rm tr}.$$

, which admits the following operational meaning. The following well-known fact relates the trace distance with the optimal probability of distinguishing quantum states. Their fidelity, denoted by $F(\rho_0, \rho_1)$, is

$$F(\rho_0, \rho_1) = \|\sqrt{\rho_0}\sqrt{\rho_1}\|_{tr}. \tag{1}$$

When ρ_0 and ρ_1 are classical states, the trace distance $|\rho_0 - \rho_1|_{\text{tr}}$ is equivalent to the statistical distance between ρ_0 and ρ_1 . It is also a well known fact that for two distributions X_1, X_2 over \mathcal{X} , let $p_x = \mathbf{Pr}[X_1 = x]$ and $q_x = \mathbf{Pr}[X_2 = x]$ and their statistical distance satisfies

$$|X_1 - X_2|_{\text{tr}} = \frac{1}{2} \sum_x |p_x - q_x| = \sum_{x:p_x > q_x} (p_x - q_x).$$
 (2)

For simplicity, when both states are classical, we use $(X_1) \approx_{\epsilon} (X_2)$ to denote $|X_1 - X_2|_{\mathrm{tr}} \leq \epsilon$. Moreover, the trace distance admits the following two simple facts.

Fact 1. For any state $\rho_1, \rho_2 \in \text{Dens}(A)$ and $\sigma \in \text{Dens}(B)$, we have

$$|\rho_1 - \rho_2|_{\mathrm{tr}} = |\rho_1 \otimes \sigma - \rho_2 \otimes \sigma|_{\mathrm{tr}}$$
.

Fact 2. Let $\rho, \sigma \in \text{Dens}(A \otimes B)$ be any two cq-states where A is the classical part. Moreover, $\rho = \sum_a p_a |a\rangle\langle a| \otimes \rho_B^a$ and $\sigma = \sum_a q_a |a\rangle\langle a| \otimes \sigma_B^a$. Then we have

$$|\rho - \sigma|_{\rm tr} = \sum_a |p_a \rho_B^a - q_a \sigma_B^a|_{\rm tr}.$$