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1 REVIEW: CLASSICAL COMPLEXITY THEORY

Usually, when doing complexity theory, we look at decision problems, where the output is 0
or 1. This is because it makes the problems simpler to analyze, and there is not much loss
of generality since solutions to decision problems can be efficiently turned into solutions for
function problems, where the output is more complex. Using this, we can define a general
function to be analyzed:
f : {0, 1}∗ →, where the ∗ implies it’s domain can be any set of binary strings, and 1 corre-
sponds to yes, 0 to no.
This can be reformulated in terms of formal languages, where for some decision problem
f(x), the language L corresponding to f is the set of all binary strings x such that f(x) = 1,
so: L = {x : f(x) = 1}.
Examples:

CONN = {x : x encodes a connected graph}

PRIMES = {x : x encodes a prime number}

SAT = {x : x encodes a boolean formula that is satisfiable}

FACTORING = {(x, y) : x has a prime factor between 2 and y}

Of these examples, CONN,PRIMES, and SAT are naturally decision problems. For
FACTORING, however, it seems more natural to return a prime factor of x. However,
this is not an issue, since prime factors of x can be found by changing y and using it to bi-
nary search the numbers between 2 and x, which takes linear time in the number of bits of x.

2 COMPLEXITY CLASSES

A Complexity Class is a set of Languages with related complexity. First we will define 4 of
them, and show how they are related.
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P = { Languages L : the problem x ∈ L is decidable in Poly(n) time by a determinis-
tic algorithm }.
In this definition, a deterministic algorithm is a standard Turing machine.
P is considered efficient. CONN (shown in class) and PRIMES are in P [AKS04]. The
others are not known to be in P , though most complexity theorists think they are not.

PSPACE = { Languages L : the problem x ∈ L is decidable in Poly(n) space deterministically}.
Space can be defined in terms of memory cells or tape spaces in a Turing machine.
All of the examples are in PSPACE, as they can all be computed with brute force methods
using Poly(n) space.
P is in PSPACE since an algorithm can only use Poly(n) space in Poly(n) time.

BPP (Bounded Error, Probabilistic, Polynomial) = {L : the problem x ∈ L is decidable in
Poly(n) time by a randomized algorithm}
Here, randomized algorithm means a standard Turing machine that has access to a ’coin
flipper’, which can output 0 or 1 each with probability 1/2.
Decided, for this class, is usually taken to mean that the probability of accepting x is greater
than 3/4 is x ∈ L, and is less than 1/4 if x is not in L, so we say an algorithm in BPP
decides f if ∀x, Pr[Alg(x) = f(x) > 3/4.
The 3/4 is fairly arbitrary, and it can be changed to any θ with the restriction that:
θ ≤ 1 − 2−n and θ ≥ 1/2 + 1/Poly(n) without changing the class at all. This can be
shown using Chernoff bounds, (it was a problem on homework 1) and is called error re-
duction, and can be accomplished by running the algorithm multiple times and taking the
majority value of the guesses. However, if θ < 1/2 + 1/Poly(n) it can take exponentially
many runs to get to 3/4 probability, and if θ > 1 − 2−n, it can take exponentially many
runs to reach that probability. Forcing those constraints on the output is what is meant by
’bounded error’.
BPP is, informally, that class of problems with efficient random algorithms.
CONN and PRIMES are in BPP , is not known whether the other examples are, though
most people think they are not.
P ⊆ BPP because a BPP algorithm can just not use its randomness. It is believed that
P = BPP , but unproven. This is because of excellent pseudo-random algorithms that can
effectively simulate truly random computation on a deterministic machine.
BPP ⊆ PSPACE. Since any randomized output takes Poly(n) time and space to run, a
PSPACE algorithm can try all of them, and exactly compute the probability that the BPP
algorithm would get the right answer.

NP (Non-deterministic Polynomial Time) = {L : L has a one-way, deterministic, Poly(n)
time proof system}
The full definition of NP relies on a Prover and a V erifier. The Prover is trying to con-
vince the V erifier that some given binary string x of length Poly(n) and language L, that
x ∈ L.

2



The V erifier wants to accept the proof if and only if x ∈ L.
Formally, for some x, L, the Prover sends some string π ∈ {0, 1}Poly(n) to the V erifier.
The V erifier computes on (x, π) in deterministic polynomial time and answers {0, 1} (1 for
accept), with the rules:
∀x ∈ L, ∃π such that V erifier(x, π) = 1
∀x /∈ L, ∀π V erifier(x, π) = 0
When x ∈ L, the V erifier and Prover are essentially working together, trying to find some
string that shows x ∈ L.
When x /∈ L, the Prover is essentially working as an adversary, trying to find some string
that the Prover will accept even though the Prover shouldn’t.
P ⊆ NP , since the V erifier can just ignore the proof and compute the question in Poly(n)
time.
It is not known if BPP ⊆ NP (but it clearly is if BPP = P ).
NP ⊆ PSPACE. Since each possible proof π can be checked in Poly(n) time and space, a
PSPACE algorithm can check them all and accept if any of them accept.
All of the examples are in NP .
CoNP may not be in NP . For example, UNSAT = {x : x encodes a boolean circuit with
no satisfying assignment} may not be in NP .
The relationship between the different classes shown is in the diagram, which also shows that
they are all contained in EXP , the class of problems that take exponential time to solve.
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3 QUANTUM COMPLEXITY

Since we’ve gone over Classical Complexity, where does Quantum Complexity fit in?
First, our model for quantum algorithms is quantum circuits, not Turing machines. Quan-
tum Turing machines can be defined, but they are confusing and difficult to work with.
Each circuit, however, can only take in inputs of one size, so it is not obvious how to define
complexity for quantum circuits in a way that allows us to compare them to Turing machines
that can take arbitray input sizes.
To overcome this issue, we use a model where a BPP algorithm writes down a quantum
circuit with hard coded inputs, and the measurement at the end gives the result.
Then define:
BQP (bounded-error, quantum, polynomial time) = {L : ∃ a BPP algorithm that can write
down a quantum circuit with hard-coded inputs that can decide x ∈ L} [BV97].
In this definition, decide means that when the q-bits are measured at the end of the quantum
circuit, the chance of seeing the wrong answer is less than 1/4 for any x. This is essentially
the same as deciding x ∈ L for BPP , except that a measurement needs to be done.
Defining circuit complexity as the complexity of a Turing machine that can write down the
circuit is robust, and used in classical complexity as well. For example, P = {L : ∃ a P
algorithm that can write down a classical circuit that can decide x ∈ L} and
BPP = {L : ∃ a P algorithm that can write down a classical randomized circuit that can
decide x ∈ L}.
In addition, the definition is robust to changes in the set of quantum gates used for compu-
tation, so using a different set of quantum gates does not change the definition of the class
[DN05].
CONN,PRIMES, and FACTORING are in BQP . BQP contains P and BPP and
BQP ⊆ PSPACE. The relationship between BQP and NP is unknown, though it is
widely believed that there are problems in NP not in BQP and problems in BQP not in
NP .
The evidence for those beliefs is based on oracles - there are oracles relative to which BQP
has problems not in NP and vice versa.
Additionally, it is believed that BQP is not a part of the Polynomial Time Hierarchy. [Aar10]

Theorem 3.1. BQP ⊆ PSPACE

Proof. Suppose a language L ∈ BQP , so there is a Poly(n) time algorithm that, on input
x, writes down a Quantum circuit Cx with inputs hardcoded to |1〉, and when the 1st bit of
the output of Cx is measured, it gives f(x) with probability greater than or equal to 1/4.
Cx starts in the state y1, y2, . . . ym = |111 . . . 11〉, m = Poly(n).
Then Cx applies a series of CCNOT and Hadamard (H) gates to the bits, and then the 1st
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bit is measured.
As drawn below, the state can be explicitly tracked, and a classical machine can track the
full state through the operation of each gate. CCNOT gates are easy to track because they
are deterministic, but H gates force the classical computer to split each partial state it is
tracking into two states, doubling what it must keep track of.
Then, if there are h Hadamard gate, at the end of the computation there will be 2h branches,
each corresponding to a different path through the circuit (even though some of the paths
may give the same measurement outcome). Then let |p〉 be a final state. p can be seen as
a path through the ’state tree’ drawn, and at each branching off point, there is a certain
probability amplitude assigned to p at that point (in this case it’s always 1/

√
2 since we’re

using H gates).

Example ’State Tree’ for an extremely simple circuit:
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Then, at the end of the computation, the final state can be written as a sum over all the
paths times their amplitudes, so |final〉 =

∑
p amp(p) |p〉.

amp(p) =
(

1√
2

)h
sign(p), where sign(p) is the product of the signs of the amplitude of

p. Then |final〉 =
(

1√
2

)h∑
p sign(p) |p〉. Then the final amplitude of a state |s〉 =(

1√
2

)h∑
p:|p〉=|s〉 sign(p). Then the probability of measuring the state |s〉 is the squared

magnitude of the amplitude, so Pr(s) = 2−h
∑

p,p′ sign(p)sign(p′), where the sum over p, p′

is over |p〉 = |s〉 , |p′〉 = |s〉.
What we want is the probability that we measure a |0〉 or |1〉 for the first bit. But since we
know the probability of measuring a state |s〉, we can just sum over all states |s〉 with a |1〉
in the first bit. Then Pr(1) =

∑
p,p′ sign(p)sign(p′), where the sum is over paths p, p′ such

that |p〉 = |p′〉 and the first bit is |1〉.
Additionally, we can use the formula for Pr(Cxaccept) to then get: Pr(Cxaccept)−Pr(Cxreject) =
2−h

∑
p,p′ sign(p)sign(p′)(−1)1−state(p), where state(p) is the first bit of |p〉, and the sum is

over |p〉 = |p′〉. If x ∈ L, this is greater than 1/2, and if x /∈ L, this is less than −1/2.
This shows how to calculate the output probability classically, but since there are exponen-
tially many paths, it would take an exponential amount of space to store the path informa-
tion. To make an algorithm to do this in PSPACE, the key is to calculate the contribution
to the probability from each path, which can be done in Poly(n) time and space since there
are Poly(n) gates, and add them up, which allows us to find Pr(1) with a PSPACE algo-
rithm taking exponential time.

4 BQP and PP

PP (Probabilistic Polynomial) = {L : x ∈ L is decidable by a probabilistic polynomial time
algorithm}.
Here, decidable means that the probability of the algorithm being wrong is less than 1/2.
This is different than BPP and BQP , which force the error to be less than 1/2 by at least
a 1/Poly(n) amount.
Because of that difference, PP lacks efficient error amplification, so algorithms in PP are
not necessarily efficient, since it can take exponentially many runs to get a high success
probability. This makes PP less useful than BPP as a complexity class.
PP ⊆ PSPACE, this can be seen in the same way as BPP ⊆ PSPACE, since a PSPACE
algorithm can just iterate through every possible random outcome and find the probability.
PP contains both NP and BQP . It also contains the quantum version of NP , QMA, which
is analogous to NP except the Prover sends a quantum states and the V erifier decides to
accept with a quantum algorithm.

Theorem 4.1. BQP ⊆ PP [ADH97]
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Proof. Given some quantum algorithm Q, the PP algorithm Alg first randomly computes
the end state of two paths in Q, p and p′ independently (by computing the quantum state
of the system and randomly picking one choice whenever a Hadamard gate is used).
Then let |p〉 , |p′〉 be the end states of the paths, and q be the probability that |p〉 6= |p′〉. If
|p〉 6= |p′〉, Alg outputs 1 with probability P > 1/2, −1 with probability P < 1/2.
If |p〉 = |p′〉, it outputs sign(p)sign(p′)(−1)1−state(p), where state(p) is the value of the first
bit of the final state of path p. Then the expectation value of Alg is:
E(Alg) = (1− q)2−h

∑
p,p′ sign(p)sign(p′)(−1)1−state(p) + q(2P − 1),

and 2−h
∑

p,p′ sign(p)sign(p′)(−1)1−state(p) is Pr(accept)− Pr(reject) as shown before.
If x ∈ L, then E(Alg) > 0.
If x /∈ L, then E(Alg) < 0.
Then this shows that Q can be simulated by a PP algorithm by accepting with probability
P = 1/2 + Alg(x).

With all the complexity classes we have now defined, the picture of the complexity hier-
archy is now:
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5 A few more details about PP

Just wanted to add a few things about the complexity class PP, a rather strange class.

Super-minor, boring technical detail.

First, a super-minor and boring technical detail. For PP, we say that the machine ”ac-
cepts” a string x if it outputs 1 with probability > 1/2. We say that it ”rejects” a string x
if it outputs 1 with probability < 1/2. What if, for some x, it outputs 1 with probability
exactly 1/2? Does that count as ”accept” or ”reject”? The answer is: Doesn’t really matter;
any reasonable convention you decide on gives the same class PP.
To see this, let’s say we take the convention that outputting 1 with probability 1/2 counts as
”reject”. Now suppose we have a randomized algorithm A running in time nc that ”decides”
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language L in the sense that x ∈ L⇒ Pr[A(x) = 1] > 1/2 and x 6∈ L⇒ Pr[A(x) = 1] ≤ 1/2.
The first thing to note is that since A runs in time nc, it flips at most nc coins, and thus every
possible outcome it has occurs with probability that is an integer multiple of 2−n

c
. In par-

ticular, when x ∈ L we know that not only is Pr[A(x) = 1] > 1/2, in fact it is ≥ 1/2 + 2−n
c
.

Now consider the following algorithm B. On any input x, it first flips nc+1 coins. If they
all come up 1, then B immediately outputs 0. Otherwise, B simulates A. Note that B is
still polynomial time. Furthermore, the effect of that first stage of flipping nc+1 coins is to
slightly down-shift all of A’s probabilities by roughly 2−n

c+1
. So now we will indeed have

that x ∈ L⇒ Pr[B(x) = 1] > 1/2 and x 6∈ L⇒ Pr[B(x) = 0] < 1/2. So you see, with this
kind of trick, the exact tie-breaking convention in PP does not matter.

NP is in PP.

Now let me explain why NP is in PP. It’s very simple. By the theory of NP-completeness,
it is sufficient to show that SAT is in PP. Here is the algorithm. On input F , an m-variable
Boolean formula (where m < |F | = n)), the PP algorithm guesses a uniformly random
assignment α ∈ {0, 1}m and checks if it satisfies F . If so, the algorithm outputs 1. If not,
the algorithm outputs a random coin flip. Now it’s clear that if F ∈ SAT then Pr[output
1] ≥ 1/2 + 2−m and if F 6∈ SAT then Pr[output 1] ≤ 1/2. (In fact, it’s = 1/2 in the second
case.) This shows SAT is in PP, by the above super-minor boring discussion.

PP is closed under complement.

As you can see from the original > 1/2 vs. < 1/2 definition of PP, it is symmetrically
defined with respect to yes-instances and no-instances; i.e., it is ”closed under complementa-
tion”; i.e., if L is in PP then so is Lc. Hence UNSAT is in PP, which means that PP contains
not just NP but also coNP (if you remember that class).

A ”complete” problem for PP.

An easy-to-show fact in complexity theory: Let MAJ-SAT be the language of all Boolean
formulas F for which more than half of all assignments satisfy F . You should be able to
easily show that MAJ-SAT is in PP. In fact, it is also very easy to show that MAJ-SAT is
”PP-complete”. In particular, MAJ-SAT is in P if and only if P = PP.

The weird nature of PP.

On one hand, PP contains both NP and coNP. On the other hand, it is not known to
contain the class PNP (if you remember what that is: namely, the languages decidable by
polynomial time algorithms with access to a SAT oracle). On the other other hand, it is
known that the entire ”polynomial hierarchy” (a vast generalization of NP, which is ”almost”
as large as PSPACE) is contained in PPP (i.e., polynomial-time algorithms with access to

9



an oracle for MAJ-SAT). This is ”Toda’s Theorem”. So yeah, PP is kind of a weird and
unnatural class; the basic version is not very powerful; it’s not closed under ”subroutines”;
but when you ”close” it under subroutines it becomes super-powerful.
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