
CMSC 491: Introduction to Quantum Computation Sevag Gharibian
Fall 2015, Virginia Commonwealth University

Lecture 6: Deutsch’s Algorithm

“Computers are physical objects, and computations are physical processes. What computers can
or cannot compute is determined by the laws of physics alone. . .”
— David Deutsch

In the last few lectures, we’ve introduced the postulates of quantum mechanics, and studied them in
some depth in the contexts of entanglement detection and non-local games. We now switch to the topic of
quantum algorithms, i.e. algorithms harnessing the four postulates of quantum mechanics. We begin with a
very simple quantum algorithm due to David Deutsch, which is by no means new (it was discovered in 1985),
nor does it tackle a particularly important problem (in fact, the problem is quite artificial). Nevertheless,
Deutsch’s algorithm serves as an excellent proof of concept that, in certain settings, quantum computers are
strictly more powerful than classical ones.

1 The setup: Functions as oracles

The problem which Deutsch’s algorithm tackles is stated in terms of binary functions f : {0, 1} 7→ {0, 1}.
Thus, the first thing we’ll need to do is understand how to model such functions in the quantum circuit
model. What makes the task slightly non-trivial is that, recall by Postulate 2 of quantum mechanics, all
quantum operations must be unitary and hence reversible. In general, however, given the output f(x) of a
function, it is not always possible to invert f to obtain the input x. In other words, we have to compute
f(x) in such a way as to guarantee that the computation can be undone. This is achieved via the following
setup:

|y〉

|x〉 |x〉

|y ⊕ f (x)〉
Uf

Here, Uf ∈ U((C2)⊗2) is a unitary operator mapping |x〉|y〉 7→ |x〉|x ⊕ y〉 for any x, y ∈ {0, 1} (i.e. |x〉, |y〉
denote standard basis states), and where ⊕ denotes XOR or addition modulo 2. Note that by linearity, once
we define the action of Uf on standard basis states, we immediately know how it acts on any input state
|ψ〉 ∈ (C2)⊗2.

Exercise. Let |ψ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉. What is the state Uf |ψ〉?

Observe now that Uf is reversible — this is because running Uf again on its output, |x〉|y ⊕ f(x)〉, yields
state |x〉|y⊕f(x)⊕f(x)〉 = |x〉|y〉, since f(x)⊕f(x) = 0 (adding the same bit twice and dividing by 2 leaves
remainder zero). Second, note that we have not specified the inner workings of Uf (i.e. we have not given
a circuit implementing the functionality stated above); in this course, we shall treat Uf as a “black box” or
“oracle” which we presume we can run, but cannot “look inside” to see its implementation details.

1

2 The problem: Is f constant or balanced?

The problem Deutsch’s algorithm tackles can now be stated as follows. Given a block box Uf implementing
some unknown function f : {0, 1} 7→ {0, 1}, determine whether f is “constant” or “balanced”. Here,
constant means f always outputs the same bit, i.e. f(0) = f(1), and balanced means f outputs different bits
on different inputs, i.e. f(0) 6= f(1).

Exercise. Suppose f(0) = 1 and f(1) = 0. Is f constant or balanced? Given an example of a constant f .

Of course, there is an easy way to determine whether f is constant or balanced — simply evaluate f on
inputs 0 and 1, i.e. compute f(0) and f(1), and then check if f(0) = f(1). This naive (classical) solution,
however, requires two queries or calls to Uf (i.e. one to compute f(0) and one to compute f(1)). So certainly
at most two queries to Uf suffice to solve this problem. Can we do it with just one query? Classically, the
answer turns out to be no. But quantumly, Deutsch showed how to indeed achieve this with a single query.

Quantum query complexity. As you may have noticed above, the “cost function” we are interested in
minimizing in solving Deutsch’s problem is the number of quantum queries to Uf . This is an example of the
model of quantum query complexity, in which many quantum algorithms have been developed. In the study
of quantum query complexity, one is given a black box Uf implementing some function f , and asked what
the minimum number of required queries to Uf is in order to determine some desired property of f . Note
that the quantum algorithm computing this property can consist of (say) 999999999 quantum gates; if it
contains only 2 queries to Uf , then we consider the cost of the algorithm as 2, i.e. all “non-query” operations
are considered free.

3 The algorithm

3.1 A naive idea

Before demonstrating the algorithm itself, let us first attempt a simpler, more naive approach — since we
are allowed to query Uf quantumly, what happens if we just query Uf in superposition in the input register?
In other words, what happens if we run the circuit for Uf with input state |x〉 replaced with α|0〉+ β|1〉 and
output state |y〉 with |0〉? Intuitively, here we have set the input register to both possible inputs 0 and 1,
and so we expect Uf to return a superposition of both possible outputs, f(0) and f(1). Indeed, by linearity
of Uf , the output of the circuit will be

|ψ〉 = Uf (α|0〉+ β|1〉)⊗ |0〉 = αUf |0〉|0〉+ βUf |1〉|0〉 = α|0〉|f(0)〉+ β|1〉|f(1)〉.

Thus, we seem to have obtained both outputs of f with just a single query! Unfortunately, things in
life are rarely free, and this is certainly no exception — although we have both outputs f(0) and f(1) in
superposition, we cannot hope to extract both answers via measurement. In particular, once we measure
both registers in the standard basis, we will collapse to one of the two terms in the superposition, effectively
destroying the other term.

Exercise. Suppose one measures the first qubit of the output state |ψ〉 (this qubit marks which term in
the superposition we have) with a standard basis measurement {|0〉〈0|, |1〉〈1|}. Show that the probability of

outcome 0 or 1 is |α|2 or |β|2, respectively, and that in each case, the state collapses to either |0〉|f(0)〉 or
|1〉|f(1)〉, respectively. Thus, only one answer f(0) or f(1) can be extracted this way.

Luckily, our goal is not to extract both f(0) and f(1) after a single query. Rather, we want something
possibly simpler: To evaluate the expression f(0)⊕ f(1).

2

Exercise. Convince yourself that f is constant if f(0) ⊕ f(1) = 0 and f is balanced if f(0) ⊕ f(1) = 1.
Thus, Deutsch’s problem is equivalent to evaluating f(0)⊕ f(1).

It turns out that by a clever twist of the naive approach above, we can indeed evaluate f(0)⊕ f(1) (without
individually obtaining the values f(0), f(1)) via Deutsch’s algorithm.

3.2 Deutsch’s algorithm

The circuit for Deutsch’s algoritm is given as follows.

|q1〉 = |0〉 H
Uf

H
LL✙✙✙✙✙✙ ❴❴❴❴❴❴❴❴

✤✤✤✤✤✤✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

✤✤
✤✤
✤✤
✤

|q2〉 = |1〉 H

It is not a priori obvious at all why this circuit should work, and this is indicative of designing quantum
algorithms in general — the methods used are often incomparable to known classical algorithm design
techniques, and thus developing an intuition for the quantum setting can be very difficult. Let us hence
simply crunch the numbers and see why this circuit indeed computes f(0) ⊕ f(1), as claimed. Once we’ve
done the brute force calculation, we will take a step back and talk about the phase kickback trick, which
is being used here, and which will allow for a much simpler and somewhat more intuitive understanding of
why the algorithm works.

As in previous lectures, let us divide the computation into 4 stages denoted by the quantum state in that
stage: At the start of the circuit (|ψ1〉), after the first Hadamards are applied (|ψ2〉), after Uf is applied
(|ψ3〉), and after the last Hadamard is applied (|ψ4〉). It is clear that

|ψ1〉 = |0〉|1〉,

|ψ2〉 = |+〉|−〉 =
1

2
(|0〉|0〉 − |0〉|1〉+ |1〉|0〉 − |1〉|1〉).

After the oracle Uf is applied, we have state

|ψ3〉 =
1

2
(|0〉|f(0)〉 − |0〉|1⊕ f(0)〉+ |1〉|f(1)〉 − |1〉|1⊕ f(1)〉).

Before we apply the final Hadamard, it will be easier to break our analysis down into two cases: When f is
constant and when f is balanced.

Case 1: Constant f. By definition, if f is constant, then f(0) = f(1). Therefore, we can simplify |ψ3〉 to

|ψ3〉 =
1

2
(|0〉|f(0)〉 − |0〉|1⊕ f(0)〉+ |1〉|f(0)〉 − |1〉|1⊕ f(0)〉)

=
1

2
((|0〉+ |1〉)⊗ |f(0)〉 − (|0〉+ |1〉)⊗ |1⊕ f(0)〉)

=
1

2
(|0〉+ |1〉)⊗ (|f(0)〉 − |1⊕ f(0)〉)

=
1√
2
|+〉 ⊗ (|f(0)〉 − |1⊕ f(0)〉).

Thus, qubit 1 is now in state |+〉. We conclude that

|ψ4〉 =
1√
2
|0〉 ⊗ (|f(0)〉 − |1⊕ f(0)〉),

i.e. qubit 1 is exactly in state |0〉. Thus, measuring qubit 1 in the standard basis now yields outcome 0 with
certainty.

3

Case 2: Balanced f. By definition, if f is balanced, then f(0) 6= f(1). Since f is a binary function, this
means f(0)⊕ 1 = f(1) and equivalently f(1)⊕ 1 = f(0). Therefore, we can simplify |ψ3〉 to

|ψ3〉 =
1

2
(|0〉|f(0)〉 − |0〉|f(1)〉+ |1〉|f(1)〉 − |1〉|f(0)〉)

=
1

2
((|0〉 − |1〉)⊗ |f(0)〉 − (|0〉 − |1〉)⊗ |f(1)〉)

=
1

2
(|0〉 − |1〉)⊗ (|f(0)〉 − |f(1)〉)

=
1√
2
|−〉 ⊗ (|f(0)〉 − |f(1)〉).

Thus, qubit 1 is now in state |−〉. We conclude that

|ψ4〉 =
1√
2
|1〉 ⊗ (|f(0)〉 − |f(1)〉),

i.e. qubit 1 is exactly in state |1〉. Thus, measuring qubit 1 in the standard basis now yields outcome 1 with
certainty.

Conclusion. If f is constant, the algorithm outputs 0, and if f is balanced, the algorithm outputs 1.
Thus, the algorithm decides whether f is constant or balanced, using just a single query!

3.3 The phase kickback trick

We’ve analyzed Deutsch’s algorithm using a brute force calculation, but there’s a more intuitive view which
will be used repeatedly in later algorithms, and which simplifies our calculation here greatly. This view is
in terms of the phase kickback trick, which Deutsch’s algorithm uses. To explain the trick, consider for any
x ∈ {0, 1} what happens if we run Uf on input |x〉|−〉:

|ψ〉 = Uf |x〉|−〉 =
1√
2

(Uf |x〉|0〉−Uf |x〉|1〉) =
1√
2

(|x〉|f(x)〉− |x〉|1⊕ f(x)〉) = |x〉⊗ 1√
2

(|f(x)〉− |1⊕ f(x)〉).

Now, there are two possibilities: Either f(x) = 0, or f(x) = 1. If f(x) = 0, the equation above simplifies to

|ψ〉 = |x〉 ⊗ 1√
2

(|0〉 − |1〉) = |x〉|−〉,

i.e. the input state is unchanged by the action of Uf . If, on the other hand, f(x) = 1, we instead have

|ψ〉 = |x〉 ⊗ 1√
2

(|1〉 − |0〉) = −|x〉|−〉,

i.e. a −1 phase factor is produced. We can summarize both these cases in a single equation:

Uf |x〉|−〉 = (−1)f(x)|x〉|−〉. (1)

Exercise. Convince yourself that the equation above indeed captures both the cases of f(x) = 0 and
f(x) = 1.

Reanalyzing Deutsch’s algorithm using phase kickback. Let us return to the state in Deutsch’s
algorithm just before Uf is applied, i.e.

|ψ2〉 = |+〉|−〉 =
1√
2

(|0〉|−〉+ |1〉|−〉).

4

(Note that we have not expanded out the |−〉 state as we did previously — this is because with the phase
kickback trick, we don’t need to go to this level of detail!) By applying phase kickback (Equation (1)), we
know that after Uf is applied, we have state

|ψ3〉 =
1√
2

((−1)f(0)|0〉|−〉+ (−1)f(1)|1〉|−〉).

Suppose now that f is constant, i.e. f(0) = f(1). Then, above we can factor out the −1 phase factor to
simplify |ψ3〉 to

|ψ3〉 = (−1)f(0)
1√
2

(|0〉|−〉+ |1〉|−〉) = (−1)f(0)|+〉|−〉.

Thus, applying the final Hadamard to qubit 1 yields

|ψ4〉 = (−1)f(0)|0〉|−〉.

Measuring the first qubit now yields outcome 0 with certainty, as before.
On the other hand, if f is balanced (i.e. f(0) 6= f(1)), then we cannot simply factor out the (−1) term

as before! Thus, up to an overall factor of ±1, |ψ3〉 can be written as

|ψ3〉 = ± 1√
2

(|0〉|−〉 − |1〉|−〉) = ±|−〉|−〉.

Exercise. Verify the equation above by considering the two possible balanced functions f1(0) = 0 and
f1(1) = 1 and f2(0) = 1 and f2(1) = 0.

We conclude that applying the final Hadamard to qubit 1 yields

|ψ4〉 = ±|1〉|−〉.

Measuring the first qubit now yields outcome 1 with certainty, as before.

4 The Deutsch-Josza algorithm

Deutsch’s algorithm works in the simple case where f : {0, 1} 7→ {0, 1} acts on a single input bit. However,
single-bit functions are not so interesting; our primary area of interest is the design and analysis of quantum
algorithms for determining properties of functions f : {0, 1}n 7→ {0, 1} which act on many input bits. This
requires some familiarity in handling n-qubit states, and a good way to practice this is by developing the
n-bit generalization of Deutsch’s algorithm, known as the Deutsch-Josza algorithm.

Specifically, imagine now we have an n-bit function f : {0, 1}n 7→ {0, 1} which is promised to be constant
or balanced, and we wish to determine which is the case. Here, constant means f(x) is the same for all
x ∈ {0, 1}, and balanced means is f(x) = 0 for precisely half the x ∈ {0, 1}n and f(x) = 1 for the remaining
inputs?

Exercise. Give examples of balanced and constant functions on 2 bits. Can you give an example of a 2-bit
function which is neither constant nor balanced? Finally, can a single-bit function be neither constant nor
balanced?

It turns out that Deutsch’s algorithm generalizes in an easy manner to this setting; however, its analysis is
a bit more tricky, and crucially uses the phase kickback trick. In this more general setting, note that we
define the oracle Uf implementing f analogously to before: Uf |x〉|y〉 = |x〉|y⊕f(x)〉, where now x is an n-bit
string.

The circuit for the Deutsch-Josza algorithm is given in Figure 4. As before, each wire denotes a single
qubit. The first n qubits are initialized to |0〉; these are the input qubits. The final, i.e. (n + 1)st, qubit is

5

H|0〉

H|0〉

H|0〉

H|1〉

Uf

H

H

H

Figure 1: Quantum circuit for the Deutsch-Josza algorithm.

initialized to |1〉. Observe that the algorithm is the straightforward generalization of Deutsch’s algorithm to
the setting of n input qubits. We claim that using a single query to Uf , the Deutsch-Josza algorithm can
determine if f is constant or balanced. Let us now see why this is so.

As before, we divide the computation into 4 stages denoted by the quantum state in that stage: At the
start of the circuit (|ψ1〉), after the first Hadamards are applied (|ψ2〉), after Uf is applied (|ψ3〉), and after
the last Hadamard is applied (|ψ4〉). It is clear that

|ψ1〉 = |0〉 · · · |0〉|1〉 = |0〉⊗n|1〉,
|ψ2〉 = |+〉 · · · |+〉|−〉 = |+〉⊗n|1〉.

Since we have defined the action of Uf in terms of the standard basis, i.e. Uf |x〉|y〉 = |x〉|y⊕ f(x)〉, in order
to understand how Uf applies to |ψ2〉, we first need to rewrite |+〉⊗n in terms of the standard basis. For
this, note that

|+〉⊗n =
1√
2
n (|0〉+ |1〉)⊗ · · · ⊗ (|0〉+ |1〉) =

1

2n/2

∑
x∈{0,1}n

|x〉,

where the last equality holds since expanding the tensor products out yields 2n terms in the sum, each of
which corresponds to a unique string x ∈ {0, 1}n.

Exercise. Verify that |+〉⊗3 = 1
2
√
2

∑
x∈{0,1}3 |x〉.

It follows that we can rewrite |ψ2〉 as

|ψ2〉 = |+〉⊗n|1〉 =
1

2n/2

∑
x∈{0,1}n

|x〉|−〉.

Now that we have the first register written with respect to the standard basis, we can analyze the action of
Uf using the phase kickback trick, obtaining state

|ψ3〉 =
1

2n/2

∑
x∈{0,1}n

(−1)f(x)|x〉|−〉.

Finally, we must apply the last set of Hadamard gates, which gives |ψ4〉 = 1
2n/2

∑
x∈{0,1}n(−1)f(x)H⊗n|x〉|−〉.

To analyze this state, we first need to understand what H⊗n|x〉 equals for arbitrary x ∈ {0, 1}. For this, we
begin with a clean and formal way for writing the action of H on a single qubit. Recall that H|0〉 = |+〉 and

6

H|1〉 = |−〉. Equivalently, this means that for x1 ∈ {0, 1},

H|x1〉 =
1√
2

∑
z1∈{0,1}

(−1)x1z1 |z1〉,

where x1z1 is just the product of x1 and z1.

Exercise. Verify the statement above by considering the cases H|0〉 and H|1〉.

Now that we have a clean way of expressing H|x1〉 for single qubit |x1〉, we can generalize this to n-qubit
states. Specifically, if we write string x = x1 · · ·xn as |x1〉 ⊗ · · · ⊗ |xn〉, we have

H⊗n|x〉 = H|x1〉 ⊗ · · · ⊗H|xn〉

=
1

2n/2

∑
z1∈{0,1}

(−1)x1z1 |z1〉 ⊗ · · · ⊗
∑

zn∈{0,1}

(−1)xnzn |zn〉

=
1

2n/2

∑
z∈{0,1}n

(−1)x1z1+···+xnzn |z〉.

Can we simplify this expression further? There is one small last trick we can apply which will clean it up a
bit: Observe that x1z1 + · · ·xnzn can be rewritten as the bitwise inner product modulo 2 of strings x and z,
i.e. x1z1 + · · ·xnzn = x · z. (The mod 2 arises since the base is (−1), so all we care about is if the exponent
x · z is even or odd.) Combining these facts, we have that after the final Hadamards are applied, we have

|ψ4〉 =
1

2n/2

∑
x∈{0,1}n

(−1)f(x)H⊗n|x〉|−〉

=
1

2n/2

∑
x∈{0,1}n

(−1)f(x)

 1

2n/2

∑
z∈{0,1}n

(−1)x·z|z〉

 |−〉
=

1

2n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)f(x)+x·z|z〉|−〉.

Finally, a measurement of the first n qubits of |ψ4〉 is made in the standard basis. As for Deutsch’s algo-
rithm, a good way to analyze this is by individually considering the cases when f is constant or balanced,
respectively. The trick in both analyses will be to determine the amplitude on the all zeroes state, |0〉⊗n, in
the first register.

Case 1: Constant f. Suppose first that f is constant. Then, we can factor out the term (−1)f(x) in |ψ4〉,
i.e.

|ψ4〉 = (−1)f(x)
∑

z∈{0,1}n

 1

2n

∑
x∈{0,1}n

(−1)x·z

 |z〉|−〉.
Now consider the amplitude on |z〉 = |0 · · · 0〉, which is given by (up to an insignificant (−1)f(x) global phase
out front)

1

2n

∑
x∈{0,1}n

(−1)x·0···0 =
1

2n

∑
x∈{0,1}n

(−1)0 =
1

2n

∑
x∈{0,1}n

1 =
1

2n
2n = 1.

In other words, the state |0〉⊗n|−〉 has amplitude 1. Since |ψ4〉 is a unit vector, we conclude that we must
have |ψ4〉 = (−1)f(x)|0 · · · 0〉|−〉, i.e. all the weight is on this one term. Thus, if f is constant, then measuring
the first n qubits in the standard basis yields outcome |0 · · · 0〉 with certainty.

7

Case 2: Balanced f. In this case, we cannot simply factor out the (−1)f(x) term, since f can take
on different values depending on its input x. However, it still turns out to be fruitful to think about the
amplitude on the state |z〉 = |0 · · · 0〉. This is given by

1

2n

∑
x∈{0,1}n

(−1)f(x)+x·0···0 =
1

2n

∑
x∈{0,1}n

(−1)f(x)

since z = 0. Since f is balanced, we know that for precisely half the terms in this sum, f(x) = 0, and for the
other half f(x) = 1. In other words, all the terms in this sum cancel, i.e. the sum equals 0! We conclude that
the amplitude on |z〉 = |0 · · · 0〉 is zero, and so we will never see outcome |0 · · · 0〉 in the final measurement.

Combining our observations for both cases, we find the following: When the final measurement is com-
pleted, if the outcome is 0n, then we output “constant”; for any other n-bit measurement result, we output
“balanced”.

Classical algorithms for the Deutsch-Josza problem. Finally, you might wonder how classical algo-
rithms compete with the Deutsch-Josza algorithm. For the case of deterministic classical algorithms, if f is
balanced, then there are 2n/2 inputs x yielding f(x) = 0 and 2n/2 inputs x yielding f(x) = 1. Thus, in the
worst case, an algorithm might be very unlucky and have its first 2n/2 queries return value f(x) = 0, only
to have query 2n/2 + 1 return f(x) = 1. For this reason, deterministic algorithms have worst case query
complexity 2n/2 + 1. In this setting, the Deutsch-Josza algorithm yields an exponential improvement over
classical algorithms, requiring just a single query to f .

However, one can also try a randomized classical algorithm. Here is a particularly simple one:

1. Repeat the following K times, for K a parameter to be chosen as needed:

(a) Pick x ∈ {0, 1} uniformly at random.

(b) Call Uf to evaluate f(x).

(c) If f(x) differs from any previous query answer, then halt and output “balanced”.

2. Halt and output “Constant”.

This algorithm does something straightforward — it repeatedly tries random values of f(x), and if it
ever obtains two different answers to its queries, it outputs “balanced”; otherwise, all its queries returned
the same answer, and so it outputs “constant”. Will this algorithm always be correct? No. In fact, it has
one-sided error, in the following sense. If f is constant, then all queries will always output the same answer.
Thus, line 1c will never cause the program to halt, and it will correctly output “constant” on line 2. On the
other hand, if f is balanced, then the algorithm might get really unlucky — all of its K queries f(x) might
output the same bit, even though f is balanced. Thus, in this case the algorithm will incorrectly output
“constant” on line 2.

We are left with two questions: What is the query cost of this randomized algorithm, and what is its
probability of error? Clearly, the cost is K queries, since that is the number of times the loop runs. As for
the error, note that when f is balanced (which is the only case in which an error might occur), when making
a single query, the probability of getting output (say) f(x) = 0 is 1/2. Since all query inputs are uniformly
and independently chosen at random, the probability of having all K queries return the same bit is hence
1/2K . We conclude that the error probability scales inverse exponentially with K.

Exercise. Suppose we wish our randomized algorithm to have error probability at most 1/n. What should
we set K to?

Finally, let us compare this to the Deutsch-Josza algorithm. Suppose that f is chosen to be constant
with probability 1/2 and balanced with probability 1/2. Then, the Deutsch-Josza algorithm uses 1 query to

8

determine if f is constant or balanced with certainty. On the other hand, if the randomized algorithm uses
K ∈ O(1) queries, then its probability of success is

Pr[success] = Pr[f is constant] · Pr[output “constant” | f is constant] +

Pr[f is balanced] · Pr[output “balanced” | f is balanced]

=
1

2
· 1 +

1

2
· (1− 1

2K
)

= 1− 1

2K+1
.

Exercise. What is the probability of success for the randomized algorithm if it performs just a single
query, i.e. K = 1? How does this compare with the Deutsch-Josza algorithm?

9

	The setup: Functions as oracles
	The problem: Is f constant or balanced?
	The algorithm
	A naive idea
	Deutsch's algorithm
	The phase kickback trick

	The Deutsch-Josza algorithm

