1 Background

As its name suggests, the quantum approximate optimization algorithm (QAOA) is a quantum algorithm for finding approximate solutions to optimization problems. Common examples include constraint satisfaction problems, for example, MaxCut. QAOA can be thought of as a discretization of the quantum adiabatic algorithm (QAA or QADI), which uses adiabatic quantum computing to solve optimization problems.

Given a problem Hamiltonian, \(C \), and a driving Hamiltonian, \(B \), and a specified number of layers or steps, \(p \), QAOA \(p \) can be described by the following circuit,

\[
|\gamma,\beta\rangle = e^{-i\beta_p B} e^{-i\gamma_p C} \cdots e^{-i\beta_1 B} e^{-i\gamma_1 C} |s\rangle
\]

(1.1)

where \(|s\rangle \) is the ground state of \(B \), and where \(\gamma_i \) and \(\beta_i \) are user-defined parameters. In applying QAOA \(p \) to an optimization problem, we wish to maximize (or minimize) \(\langle \gamma,\beta | C | \gamma,\beta \rangle \), over all possible \(\gamma_i \) and \(\beta_i \).

The problem Hamiltonian encodes the optimization problem such that the ground state of the Hamiltonian is the optimal solution to the optimization problem. Given a problem specified by \(n \) bits and \(m \) clauses, the objective is defined as,

\[
C(z) = \sum_{\alpha=1}^{m} C_\alpha(z)
\]

(1.2)

where \(z \) is an \(n \) bit string and \(C_\alpha(z) = 1 \) if \(z \) satisfies that clause, and is 0 otherwise.

For example in the case of MaxCut given a graph, \(G = (V,E) \) (\(n = |V|, m = |E| \)), the following problem Hamiltonian is used,

\[
C = \sum_{ij \in E} C_{ij} \quad \text{where} \quad C_{ij} = \frac{1}{2} (I - Z_i Z_j)
\]

(1.3)

A commonly used driving Hamiltonian is,

\[
B = \sum_{j \in [n]} X_j
\]

(1.4)

Thus, \(|s\rangle = |+\rangle^{\otimes n} \), the uniform superposition of all computational basis state. Intuitively, this driving Hamiltonian “maps” all computational basis states to all other computational basis states equally.

For optimizing the parameters, \(\gamma_i \) and \(\beta_i \), we consider the expectation of the Problem Hamiltonian in the output state of QAOA \(p \), which is given by,

\[
F_p(\gamma, \beta) = \langle \gamma, \beta | C | \gamma, \beta \rangle
\]

(1.5)

Let \(M_p \) be the maximum (or minimum) of \(F_p \) over all angles,

\[
M_p = \max_{\gamma_i, \beta_i} F_p(\gamma, \beta)
\]

(1.6)
Given γ and β vectors of $p - 1$ angles for $p - 1$ layers of QAOA. We can construct, γ' and β' vectors of p angles, by setting the last angles, γ_p and β_p, to be 0. This implies,

$$F_{p - 1}(\gamma, \beta) = F_p(\gamma', \beta') \implies M_p \geq M_{p - 1}$$

In other words with more layers, you have more degrees of freedom and thus, potentially better solutions.

This supposedly implies that,

$$\lim_{p \to \infty} M_p = \max_z C(z)$$

2 A Bounded Occurrence Constraint Problem

Max E3LIN2 is a combinatorial problem of bounded occurrences; given a set of linear equations containing exactly three boolean variables (E3) which sum to 0 or 1 mod 2 (LIN2), find a solution which maximizes the number of satisfied solutions. Each variable is guaranteed to be in no more than D equations.

One can use Gaussian elimination to determine if the set of linear equations has a solution; however, the problem becomes hard, when we wish to maximize the number of equations satisfied. Specifically, for general instances (without bounded occurrences) it has been shown that there is no efficient $(1/2 + \epsilon)$ classical algorithm unless P=NP. Note, a random string is expected to satisfy half of the equations.

In the case we consider, where each variable is contained in most D clauses, there is a classical algorithm [3] for a similar but more general problem, Max-kXOR, with an approximation ratio of,

$$\frac{1}{2} + \frac{\text{constant}}{D^{1/2}}$$

It can be shown [2] that one layer of QAOA will efficiently produce a string that satisfies,

$$\frac{1}{2} + \frac{1}{101D^{1/2}\ln D}$$

times the number of equations. However, in the typical case, the output string will satisfy

$$\frac{1}{2} + \frac{1}{2\sqrt{3e}D^{1/2}}$$

3 The Approximation Ratio for QAOA$_1$

In applying QAOA to this problem, we will use the standard driving hamiltonian,

$$B = \sum_{i=1}^{n} X_i$$

where n is the number of variables. Thus, the initial state will be the ground state of B, $|s\rangle = |+\rangle^{\otimes n}$. The objective operator for each linear equation of E3LIN2 can be written as,

$$\frac{1}{2} (1 \pm Z_a Z_b Z_c)$$

where a, b, c are the variables in the equation and the \pm is determined by the sum of the equation.

Dropping the additive constant, which does not affect the solution to the problem, the problem Hamiltonian can be write as,

$$C = \frac{1}{2} \sum_{a < b < c} d_{abc} Z_a Z_b Z_c$$
where d_{abc} is zero if there is no equation containing a, b, c and ± 1 if there is and depending on the sum.

Using these Hamiltonians and some parameters, γ, β, the expected number of satisfied equations will be,

$$
m \frac{1}{2} + \langle -\gamma, \beta | C | -\gamma, \beta \rangle \tag{3.4}
$$

where

$$
| -\gamma, \beta \rangle = e^{-i\beta B} e^{i\gamma C} | s \rangle \tag{3.5}
$$

For simplicity, we will set $\beta = \pi/4$. We will show that there exists $\gamma \in \left[-\frac{1}{10D^{1/2}}, \frac{1}{10D^{1/2}} \right]$, such that the expectation is,

$$
\frac{1}{2} + \frac{1}{101D^{1/2} \ln D} \tag{3.6}
$$

Finding the actual value of γ for a specific problem can be done using an efficient search.

3.1 Proof of Bound

Here we'll give the proof of the lower bound from [2]. The main idea in the proof is to break up the expectation into individual clauses (e.g. $Z_iZ_jZ_k$) and then see how the simplified observable interacts with the terms in the QAOA circuit. Specifically, only terms in B and C containing variables in the clause (e.g. $Z_iZ_jZ_k$) will contribute to the expectation. This will also us to simplify the general expectation into a trigonometric formula depending on fewer terms, which we will then be able to bound using some probability inequalities and facts about trigonometric functions.

Consider a specific clause, without loss of generality, we will say the clause contains variables 1, 2, and 3,

$$
\frac{1}{2} d_{123} \langle s | e^{-i\gamma C} e^{i\beta B} Z_1Z_2Z_3 e^{-i\beta B} e^{i\gamma C} | s \rangle \tag{3.7}
$$

All terms except for $X_1 + X_2 + X_3$ in B will compute with $Z_1Z_2Z_3$; furthermore, since $\beta = \pi/4$,

$$
e^{i\beta(X_1+X_2+X_3)} Z_1Z_2Z_3 e^{-i\beta(X_1+X_2+X_3)} = \left(\prod_{i=1}^{3} \cos 2\beta + i \sin 2\beta X_1 \right) Z_1Z_2Z_3 = -Y_1Y_2Y_3 \tag{3.8}
$$

Thus, the expectation (3.7) becomes,

$$
\frac{1}{2} d_{123} \langle s | e^{-i\gamma C} e^{i\beta B} Y_1Y_2Y_3 e^{-i\beta B} e^{i\gamma C} | s \rangle \tag{3.9}
$$

We can rewrite C, separating out the clause containing 1, 2, and 3,

$$
C = \overline{C} + \frac{1}{2} d_{123} Z_1Z_2Z_3 \tag{3.10}
$$

Now we can conjugate the $Y_1Y_2Y_3$ with the contribution from the clause 123, the expectation (3.7) becomes,

$$
\frac{1}{2} d_{123} \langle s | e^{-i\gamma \overline{C}} (\cos(\gamma d_{123}) Y_1Y_2Y_3 + \sin(\gamma d_{123}) X_1X_2X_3) e^{i\gamma \overline{C}} | s \rangle \tag{3.11}
$$

We will first evaluate,

$$
\langle s | e^{-i\gamma \overline{C}} X_1X_2X_3 e^{i\gamma \overline{C}} | s \rangle \tag{3.12}
$$
By inserting \(I = \sum_{x \in \{0,1\}} |x\rangle \langle x| \), we get
\[
\sum_{z_1,z_2,z_3} \sum_{z'_1,z'_2,z'_3} \langle s| e^{-i \gamma \overline{C}} |z_1,z_2,z_3\rangle \langle z_1,z_2,z_3| X_1 X_2 X_3 |z'_1,z'_2,z'_3\rangle \langle z'_1,z'_2,z'_3| e^{i \gamma \overline{C}} |s\rangle \] (3.13)
\[
= \sum_{z_1,z_2,z_3} \langle s| e^{-i \gamma \overline{C}} |z_1,z_2,z_3\rangle \langle -z_1,-z_2,-z_3| e^{i \gamma \overline{C}} |s\rangle \] (3.14)

Now, we will more closely consider \(\overline{C} \). We will separate it into terms involving only \(Z_1 \), etc and \(Z_1 Z_2 \), etc. Terms which involved none of 1, 2, and 3 will commute and cancel out. Thus, we can consider,
\[
\overline{C} = Z_1 C_1 + Z_2 C_2 + Z_3 C_3 + Z_1 Z_2 C_{12} + Z_1 Z_3 C_{13} + Z_2 Z_3 C_{23} \] (3.15)

Note, both terms of \(Z_1 Z_2 \), \(Z_1 Z_3 \), and \(Z_2 Z_3 \) will anticommute with \(X_1 X_2 X_3 \). Thus, they will also be cancelled out. Thus, only the first three terms of \(\overline{C} \) contribute to the expectation; and the \(X_1 X_2 X_3 \) term of the expectation \((3.12)\) becomes,
\[
\frac{1}{8} \sum_{z_1,z_2,z_3} \langle \overline{s}| e^{-2 \gamma (z_1 C_1 + z_2 C_2 + z_3 C_3)} |\overline{s}\rangle \] (3.16)
where \(|\overline{s}\rangle = \prod_{a \in Q} |+\rangle_a \), where \(Q \) contains the terms appearing in \(C_1 \), \(C_2 \), and \(C_3 \). Let \(q \) be the size of \(Q \), which can be as large as \(6D \).

Writing out the above \((3.16)\) and using some trigonometry identities, we get,
\[
\frac{1}{4} \langle \overline{s}| \{ \cos(2 \gamma (C_1 + C_2 + C_3)) + \cos(2 \gamma (C_1 - C_2 - C_3)) + \cos(2 \gamma (-C_1 + C_2 - C_3)) + \cos(2 \gamma (-C_1 - C_2 + C_3)) \} |\overline{s}\rangle \] (3.17)
\[
= \cos(2 \gamma (C_1 + C_2 + C_3)) + \cos(2 \gamma (-C_1 + C_2 - C_3)) + \cos(2 \gamma (-C_1 - C_2 + C_3)) \] (3.18)

Using,
\[
C_i = \frac{1}{2} \sum_{a < b} d_{ab} Z_a Z_b \] (3.19)
we can rewrite it \((3.17)\) as,
\[
\frac{1}{4} \cdot 2^q \sum_{z_a \in Q} \{ \cos(\gamma (c_1(z) + c_2(z) + c_3(z))) + \cos(\gamma (c_1(z) - c_2(z) - c_3(z))) \} \] (3.20)
\[
+ \cos(\gamma (-c_1(z) + c_2(z) - c_3(z))) + \cos(\gamma (-c_1(z) - c_2(z) + c_3(z))) \] (3.21)

We can think of each \(c_i \) as random variables from a distribution of \(q \) binary variables, then the contribution of the \(X_1 X_2 X_3 \) term \((3.12)\) to the original expectation, is the following expectation,
\[
\frac{1}{8} \mathbb{E}_x \{ \cos(\gamma (c_1 + c_2 + c_3)) + \cos(\gamma (c_1 - c_2 - c_3)) \} \] (3.22)
\[
+ \cos(\gamma (-c_1 + c_2 - c_3)) + \cos(\gamma (-c_1 - c_2 + c_3)) \] (3.23)

The contribution from the \(Y_1 Y_2 Y_3 \) can be derived similarly and is,
\[
\frac{1}{8} \mathbb{E}_x \{ \sin(\gamma (c_1 + c_2 + c_3)) + \sin(\gamma (c_1 - c_2 - c_3)) \} \] (3.24)
\[
+ \sin(\gamma (-c_1 + c_2 - c_3)) + \sin(\gamma (-c_1 - c_2 + c_3)) \] (3.25)

Therefore, the expectation \((3.7)\) becomes,
\[
\frac{1}{8} d_{123} \mathbb{E}_x \{ \sin(\gamma (d_{123} + c_1 + c_2 + c_3)) + \sin(\gamma (d_{123} + c_1 - c_2 - c_3)) \} \] (3.26)
\[
+ \sin(\gamma (d_{123} - c_1 + c_2 - c_3)) + \sin(\gamma (d_{123} - c_1 - c_2 + c_3)) \] (3.27)
Now, we consider the Taylor expansion of the above in terms of γ, singling out the linear term,

$$\frac{1}{2}d_{123}^2\gamma + P_{123}^k(\gamma) + R_{123}^k(\gamma)$$

(3.28)

where

$$P_{123}^k(\gamma) = \frac{1}{8}d_{123} \sum_{j=3,5,...}^{k} \gamma^j(-1)^{(j-1)/2} \sum_{j=3,5,...}^{k} \frac{1}{j!} E_z[(d_{123} + c_1 + c_2 + c_3)^j + ...]$$

(3.29)

and

$$|R_{123}^k| \leq \frac{1}{8} \frac{|\gamma|^{k+2}}{(k+2)!} E_z[(d_{123} + c_1 + c_2 + c_3)^{k+1} + ...]$$

(3.30)

Note, that $d_{123} = 1$ and P_{123}^k starts with a cubic term and has degree k, where k will depend on D.

For any polynomial of degree 2, c, (e.g. c_i), we have the following fact,

$$E_z[c_i^{k+2}] \leq (k+1)^{k+2} (E_z[c_i^2])^{(k+2)/2}$$

(3.31)

Since $E_z[c_i] = 0$,

$$E_z[(d_{123} \pm c_1 \pm c_2 \pm c_3)^2] = 1 + E_z[(c_1 \pm c_2 \pm c_3)^2]$$

(3.32)

Since $E_z[c_i]^2 = \sum_{a<b} d_{iab} d_{iab} \leq D$,

$$E_z[(d_{123} \pm c_1 \pm c_2 \pm c_3)^2] \leq 1 + 9D$$

(3.33)

Using the bound for polynomials of degree 2, this implies,

$$E_z[(d_{123} \pm c_1 \pm c_2 \pm c_3)^{k+2}] \leq (k+1)^{k+2} (1 + 9D)^{(k+2)/2}$$

(3.34)

Therefore, using Stirling’s formula and $e < 3$,

$$|R_{123}^k| \leq \frac{1}{8} \frac{|\gamma|^{k+2}}{(k+2)!} \left((k+1)^{k+2} (1 + 9D)^{(k+2)/2}\right)$$

(3.35)

$$\leq \frac{1}{2} \left(e(1 + 9D)^{1/2} |\gamma|\right)^{k+2}$$

(3.36)

$$\leq (9D^{1/2}/|\gamma|)^{k+2}$$

(3.37)

Note, the original expectation can be written,

$$\langle -\gamma, \pi/4 | C | -\gamma, \pi/4 \rangle = \sum_{a<b<c} \frac{1}{2} \gamma + P_{abc}^k(\gamma) + R_{abc}^k(\gamma)$$

(3.38)

$$= \frac{m}{2} \gamma + P^k(\gamma) + \sum_{a<b<c} R_{abc}^k(\gamma)$$

(3.39)

where $P^k(\gamma)$ is the sum of the m polynomials.

By the triangle inequality,

$$|\langle -\gamma, \pi/4 | C | -\gamma, \pi/4 \rangle| \geq \left| \frac{m}{2} \gamma + P^k(\gamma) \right| - \left| \sum_{a<b<c} R_{abc}^k(\gamma) \right|$$

(3.40)

$$\geq \left| \frac{m}{2} \gamma + P^k(\gamma) \right| - m(9D^{1/2}/|\gamma|)^{k+2}$$

(3.41)
To keep the negative term small, let,

$$|\gamma| \leq \frac{1}{10D^{1/2}}$$ \hspace{1cm} (3.42)

To lower bound the positive term, we use the following fact, for any constants a_i and odd k,

$$\max r = 0, 1, ..., k \left| x_r + a_2x_r^2 + ... + a_kx_r^k \right| \geq \frac{1}{k}$$ \hspace{1cm} (3.43)

where $x_r = \cos(\pi r/k)$.

Thus, letting $\gamma_r = \frac{1}{10D^{1/2}} \cos(\pi r/k)$,

$$\max_{r=0,1,...,k} \left| \frac{m}{2} \gamma_r + P^k(\gamma_r) \right| \geq \frac{m}{20D^{1/2}k}$$ \hspace{1cm} (3.44)

Thus,

$$\max_{r=0,1,...,k} \left| \frac{m}{2} \gamma_r + P^k(\gamma_r) \right| - m(9D^{1/2}|\gamma_r|)^{k+2} \geq \frac{m}{20D^{1/2}k} - m \left(\frac{9}{10} \right)^{k+2}$$ \hspace{1cm} (3.45)

Letting $k = 5 \ln D$, the right hand side is greater than,

$$\frac{m}{101D^{1/2} \ln D}$$ \hspace{1cm} (3.46)

Therefore,

$$\max_{r=0,1,...,k} \langle -\gamma_r, \pi/4 | C | -\gamma_r, \pi/4 \rangle \geq \frac{m}{101D^{1/2} \ln D}$$ \hspace{1cm} (3.47)

where $\gamma_r \in \left[-\frac{1}{10D^{1/2}} , \frac{1}{10D^{1/2}} \right]$, which completes the proof of the bound.

3.2 The Average Case

A common practice in bounding the performance of an algorithm is to bound the expected approximation ratio in the average case; in other words, for a random problem. In this case for a fixed selection of equations, we will consider a random assignment for the sums of the equations, i.e. $d_{abc} = (x_a + x_b + x_c) \mod 2$. In other words, if there are m equations, there will be 2^m possible choices of all d_{abc}, and we will pick one uniformly at random.

Again considering the expectation for the term involving variables 1, 2, and 3, since the c_i do not involve d_{123}, the expected value of d_{123} is 0. Thus, the expectation can be written as,

$$\frac{1}{8} \sin \gamma \mathbb{E}_z \left[\cos(\gamma(c_1 + c_2 + c_3)) + \cos(\gamma(c_1 + c_2 + c_3)) \right] + \cos(\gamma(c_1 + c_2 + c_3)) + \cos(\gamma(c_1 + c_2 + c_3))$$ \hspace{1cm} (3.48)

$$= \frac{1}{2} \sin \gamma \mathbb{E}_z [\cos(\gamma c_1) \cos(\gamma c_2) \cos(\gamma c_3)]$$ \hspace{1cm} (3.49)

Now looking at the expectations of each of these terms with respect to d_{iab} for $i \in \{1, 2, 3\}$,

$$\mathbb{E}_d[\cos(\gamma c_i)] = \mathbb{E}_d \left[\gamma \sum_{3 < a < b} d_{iab} z_az_b \right]$$ \hspace{1cm} (3.51)

$$= \frac{1}{2} \mathbb{E}_d \left[\prod_{3 < a < b} \exp(i\gamma d_{iab} z_az_b) + \prod_{3 < a < b} \exp(-i\gamma d_{iab} z_az_b) \right]$$ \hspace{1cm} (3.52)

$$= \prod_{3 < a < b} \cos(\gamma z_az_b)$$ \hspace{1cm} (3.53)

$$= \prod_{3 < a < b} \cos \gamma$$ \hspace{1cm} (3.54)
Note, the term does not depending on z. Since each c_i depend on distinct d's, the expected value over all the d's is,

$$
\frac{1}{2} \sin \gamma (\cos \gamma)^{D_1 + D_2 + D_3}
$$

(3.55)

where D_i is the number of terms in c_i, which implies $0 \leq D_1 + D_2 + D_3 \leq 3D$. Therefore, the contribution from every clause is,

$$
\frac{m}{2} \sin \gamma \cos^{3D} \gamma \leq E_d [\langle -\gamma, \pi/4 \mid C \mid -\gamma, \pi/4 \rangle] \leq \frac{m}{2} \sin \gamma
$$

(3.56)

Choosing γ to maximize the lower bound gives,

$$
\gamma = \frac{g}{D^{1/2}}
$$

(3.57)

For large D the lower bound is,

$$
\frac{m}{2} \frac{g}{D^{1/2}} \exp \left(-\frac{3}{2} g^2 \right)
$$

(3.58)

where setting $g = 1/\sqrt{3}$ gives,

$$
\frac{m}{2 \sqrt{3cD^{1/2}}}
$$

(3.59)

as desired.

It can be shown that for problem sizes of order m, the standard deviation of the expectation over all d's is of order \sqrt{m}. Thus, one can argue that with high probability, a “typical” instance will have at least the above approximation ratio minus a term of order \sqrt{m}.

4 A Classical Approximation Algorithm and Bound

In response to the first paper on QAOA’s application to E3LIN2, i.e. Max-3XOR, which gave slightly worse bounds than those showed above, Barak et. al. [3] gave a classical algorithm, which improved upon these bounds (and is still better than the above improved bounds for QAOA).

They showed that for any odd k, any instance of Max-kXOR, there is an efficient algorithm that finds an assignment satisfying,

$$
\frac{1}{2} + \Omega \left(\frac{1}{\sqrt{D}} \right)
$$

(4.1)

of the equations, where D is the max number of equations any one variable can be in. In the “triangle-free” case, they showed that there is an efficient algorithm which gives an assignment satisfying $\mu + \Omega(1/\sqrt{D})$, where μ is the number of equations that would be satisfied in a random assignment.

4.1 Proof of lower bound for $k = 3$

Here we will give the proof from [3] for the case of $k = 3$. The more general proof can be found in the paper. The paper uses a very common trick to lower bounding constraint satisfaction problems. First, they decouple the first coordinate. In other words instead of finding one solution (e.g x_i) for the n variables; one finds two solutions, y_i and z_i. The y_i are used for the first term of each equation and the z_i are used for the latter two terms. One can give a rounding scheme to convert, the y_i and z_i, into a single solution x_i, which only reduces the number of satisfied equations by a constant number. Finally, one can show that a random assignment of z_i (which then gives the y_i) gives the required lower bound.
To show the above, we will need some facts about the relationship between boolean functions and Fourier transformations. Any boolean function \(f : \{\pm 1\}^n \to \mathbb{R} \) can be represented by a multilinear polynomial, i.e. the following Fourier expansion,

\[
f(x) = \sum_{S \subseteq [n]} \hat{f}(S)x^S, \quad \text{where } x^S = \prod_{i \in S} x_i
\]

Note, the following,

\[
\mathbb{E}[f(x)] = \hat{f}(\emptyset) \tag{4.2}
\]

\[
\|f\|^2 = \mathbb{E}[f(x)^2] = \sum_S \hat{f}(S)^2 \implies \text{Var}[f(x)] = \sum_{S \neq \emptyset} \hat{f}(S)^2
\]

\[
\inf_l \sum_{S \supseteq l} \hat{f}(S)^2 = \mathbb{E}[(\partial_l f)(x)^2]
\]

Also, for any predicate \(P : \{\pm 1\}^r \to 0,1 \), \(r \geq 2 \), we have \(\text{Var}[(\partial_i P)(x)] \geq \Omega(2^{-r}) \) for all \(i \).

Finally, we will use the fact that low-degree polynomials often achieve their expectation. Let \(f : \{\pm 1\}^n \to \mathbb{R} \) be a multilinear polynomial of degree at most \(k \). Then \(\mathbb{P}[f(x) \geq \mathbb{E}[f]] \geq \frac{1}{4}\exp(-2k) \). In particular, for \(f^2 \),

\[
\mathbb{P}[|f(x)| \geq \|f\|_2] \geq \exp(-O(k))
\]

which implies,

\[
\mathbb{E}[|f(x)|] \geq \exp(-O(k)) \cdot \|f\|_2 \geq \exp(-O(k)) \cdot \text{stddev}[f(x)]
\]

In general, given an instance of the problem and an assignment \(x \in \{\pm 1\}^n \), the number of satisfied constraints is,

\[
\sum_{i=1}^{m} P_i(X_{S_i}) \tag{4.8}
\]

which can be thought of as a multilinear function with degree at most \(k \) (in our case, 3).

To simplify things, we will instead consider the fraction of satisfied constraints (i.e. divide the above by \(m \)). Furthermore, we will replace \(P_i \) with \(\bar{P}_i \),

\[
\bar{P}_i = P_i - \mathbb{E}[P_i] = P_i - \hat{P}_i(\emptyset)
\]

In this way, \(\bar{P}_i \) can be thought of as the advantage over a random assignment.

Therefore, given an instance, we will defined the associated polynomial \(\mathcal{B}(x) \) by,

\[
\mathcal{B}(x) = \frac{1}{m} \sum_{i=1}^{m} \bar{P}_i(x_{S_i}) \tag{4.10}
\]

Thus, in our case of \(k = 3 \), using the Fourier expansion,

\[
\mathcal{B}(x) = \sum_{|S|=3} \hat{\mathcal{B}}(S)x^S = \sum_{i,j,k \in [n]} a_{ijk}x_ix_jx_k \tag{4.11}
\]

where \(\hat{\mathcal{B}}(S) \in \{\pm \frac{1}{m}, 0\} \) depending on whether or not a constraint with those variables exists in the instance. Note, \(a_{ijk} = \frac{1}{8} \hat{\mathcal{B}}((i,j,k)) \).

We will use the trick of “decoupling” the first coordinate, i.e. the algorithm will consider \(\hat{\mathcal{B}}(y,z) = \sum_{i,j,k} a_{ijk}y_i z_j z_k \) for some \(y_i \) and \(z_i \). The algorithm will produce a good assignment for \(\mathcal{B} \) and round to produce as assignment for the original using the following randomized rounding scheme,

\[
w.p. \frac{4}{9}, x_i = \begin{cases} y_i & w.p. \frac{1}{2} \\ z_i & w.p. \frac{1}{2} \end{cases} \quad w.p. \frac{4}{9}, x_i = \begin{cases} y_i & w.p. \frac{1}{2} \\ -z_i & w.p. \frac{1}{2} \end{cases} \quad w.p. \frac{1}{9}, x_i = -y_i \tag{4.12}
\]
Thus, the expectation is equal to,

$$
\mathbb{E}[\mathcal{B}(x)] = \frac{4}{9} \sum_{i,j,k} a_{ijk} \left(\frac{y_i + z_i}{2} \right) \left(\frac{y_j + z_j}{2} \right) \left(\frac{y_z + z_z}{2} \right)
$$

(4.13)

$$
+ \frac{4}{9} \sum_{i,j,k} a_{ijk} \left(\frac{y_i - z_i}{2} \right) \left(\frac{y_j - z_j}{2} \right) \left(\frac{y_z - z_z}{2} \right)
+ \frac{1}{9} \sum_{i,j,k} a_{ijk} (-y_i)(-y_j)(-y_k)
$$

(4.14)

$$
= \frac{1}{9} \sum_{i,j,k} a_{ijk} (y_i z_j z_k + z_i y_j z_k + z_i z_j y_k)
$$

(4.15)

$$
= \frac{1}{3} \tilde{\mathcal{B}}(y, z)
$$

(4.16)

Now, we will write $\tilde{\mathcal{B}}(y, z) = \sum_i y_i G_i(z)$, where $G_i(z) = \sum_{j,k} a_{ijk} z_j z_k$. The algorithm just needs to find an assignment for z such that $\sum_i |G_i(z)|$ is large; then, we can take $y_i = \text{sgn}(G_i(z))$.

The algorithm simply chooses a random $z \in \{0, 1\}^n$ uniformly. Thus, $\mathbb{E}[|G_i(z)|^2] = \sum_{j<k} (2a_{ijk})^2 = \frac{1}{9} \text{inf}_i[\mathcal{B}]$. Applying the fact about low-degree polynomials achieving their expectations gives, $\mathbb{E}[|G_i(z)|] \geq \Omega(1) \cdot \sqrt{\text{inf}_i[\mathcal{B}]}$. Finally, since $\text{inf}_i[\mathcal{B}] = \deg(i)/4m^2$,

$$
\mathbb{E} \left[\sum_i |G_i(x)| \right] \geq \Omega(1) \cdot \sum_i \frac{\sqrt{\deg(i)}}{m} \geq \Omega(1) \cdot \sum_i \frac{\deg(i)}{m \sqrt{D}} = \frac{\Omega(1)}{\sqrt{D}}
$$

(4.17)

Since $\sum_i |G_i(x)|$ is bounded by $1/2$, by Markov’s inequality, the algorithm can find a z achieving $\sum_i |G_i(x)| \geq \Omega(1/\sqrt{D})$ with high probability after $O(\sqrt{D})$ many trials of z. Then, as stated above, y can be chosen to give $\tilde{\mathcal{B}}(y, z) \geq \Omega(1/\sqrt{D})$, which gives the correct lower bound for the expectation of $\mathcal{B}(x)$.

References

