
CMSC 657, Intro to Quantum Information Processing Lecture on November 7 and 12, 2019
Fall 2019, University of Maryland Prepared by Jessica Thompson and Xiaodi Wu

Lecture notes for Quantum Approximate Optimization Algorithm (QAOA)

1 Background

As its name suggests, the quantum approximate optimization algorithm (QAOA) is a quantum algorithm for
finding approximate solutions to optimization problems [1]. Common examples include constraint satisfaction
problems, for example, MaxCut. QAOA can be thought of as a discretization of the quantum adiabatic
algorithm (QAA or QADI), which uses adiabatic quantum computing to solve optimization problems.

Given a problem Hamiltonian, C, and a driving Hamiltonian, B, and a specified number of layers or steps,
p, QAOAp can be described by the following circuit,

|γ, β〉 = e−iβpBe−iγpC · · · e−iβ1Be−iγ1C |s〉 (1.1)

where |s〉 is the ground state of B, and where γi and βi are user-defined parameters. In applying QAOAp

to an optimization problem, we wish to maximize (or minimize) 〈γ, β|C |γ, β〉, over all possible γi and βi.
The problem Hamiltonian encodes the optimization problem such that the ground state of the Hamiltonian

is the optimal solution to the optimization problem. Given a problem specified by n bits and m clauses, the
objective is defined as,

C(z) =

m∑
α=1

Cα(z) (1.2)

where z is an n bit string and Cα(z) = 1 is z satisfies that clause, and is 0 otherwise.
For example in the case of MaxCut given a graph, G = (V,E) (n = |V |, m = |E|), the following problem

Hamiltonian is used,

C =
∑
ij∈E

Cij where Cij =
1

2
(I − ZiZj) (1.3)

A commonly used driving Hamiltonian is,

B =
∑
j∈[n]

Xj (1.4)

Thus, |s〉 = |+〉⊗n, the uniform superposition of all computational basis state. Intuitively, this driving
Hamiltonian “maps” all computational basis states to all other computational basis states equally.

For optimizing the parameters, γi and βi, we consider the expectation of the Problem Hamiltonian in the
output state of QAOAp, which is given by,

Fp(γ, β) = 〈γ, β|C |γ, β〉 (1.5)

Let Mp be the maximum (or minimum) of Fp over all angles,

Mp = max
γi,βi

Fp(γ, β) (1.6)

1

Given γ and β vectors of p− 1 angles for p− 1 layers of QAOA. We can construct, γ′ and β′ vectors of p
angles, by setting the last angles, γp and βp, to be 0. This implies,

Fp−1(γ, β) = Fp(γ
′, β′) =⇒ Mp ≥Mp−1 (1.7)

In other words with more layers, you have more degrees of freedom and thus, potentially better solutions.
This supposedly implies that,

lim
p→∞

Mp = max
z
C(z) (1.8)

2 A Bounded Occurrence Constraint Problem

Max E3LIN2 is a combinatorial problem of bounded occurrences; given a set of linear equations containing
exactly three boolean variables (E3) which sum to 0 or 1 mod 2 (LIN2), find a solution which maximizes
the number of satisfied solutions. Each variable is guaranteed to be in no more than D equations.

One can use Gaussian elimination to determine if the set of linear equations has a solution; however,
the problem becomes hard, when we wish to maximize the number of equations satisfied. Specifically, for
general instances (without bounded occurrences) it has been shown that there is no efficient (1/2+ε) classical
algorithm unless P=NP. Note, a random string is expected to satisfy half of the equations.

In the case we consider, where each variable is contained in most D clauses, there is a classical algorithm
[3] for a similar but more general problem, Max-kXOR, with an approximation ratio of,

1

2
+

constant

D1/2
(2.1)

It can be shown [2] that one layer of QAOA will efficiently produce a string that satisfies,

1

2
+

1

101D1/2 lnD
(2.2)

times the number of equations. However, in the typical case, the output string will satisfy

1

2
+

1

2
√

3eD1/2
(2.3)

3 The Approximation Ratio for QAOA1

In applying QAOA to this problem, we will use the standard driving hamiltonian,

B =

n∑
i=1

Xi (3.1)

where n is the number of variables. Thus, the initial state will be the ground state of B, |s〉 = |+〉⊗n. The
objective operator for each linear equation of E3LIN2 can be written as,

1

2
(1± ZaZbZc) (3.2)

where a, b, c are the variables in the equation and the ± is determined by the sum of the equation.
Dropping the additive constant, which does not affect the solution to the problem, the problem Hamilto-

nian can be write as,

C =
1

2

∑
a<b<c

dabcZaZbZc (3.3)

2

where dabc is zero if there is no equation containing a, b, c and ±1 if there is and depending on the sum.
Using these Hamiltonians and some parameters, γ, β, the expected number of satisfied equations will be,

m

2
+ 〈−γ, β|C |−γ, β〉 (3.4)

where

|−γ, β〉 = e−iβBeiγC |s〉 (3.5)

For simplicity, we will set β = π/4. We will show that there exists γ ∈
[−1
10D1/2 ,

1
10D1/2

]
, such that the

expectation is,

1

2
+

1

101D1/2 lnD
(3.6)

Finding the actual value of γ for a specific problem can be done using an efficient search.

3.1 Proof of Bound

Here we’ll will give the proof of the lower bound from [2]. The main idea in the proof is to break up the
expectation into individual clauses (e.g. ZiZjZk) and then see how the simplified observable interacts with
the terms in the QAOA circuit. Specifically, only terms in B and C containing variables in the clause
(e.g. ZiZjZk) will contribute to the expectation. This will also us to simplify the general expectation into a
trigonometric formula depending on fewer terms, which we will then be able to bound using some probability
inequalities and facts about trigonometric functions.

Consider a specific clause, without loss of generality, we will say the clause contains variables 1, 2, and 3,

1

2
d123 〈s| e−iγCeiβBZ1Z2Z3e

−iβBeiγC |s〉 (3.7)

All terms except for X1 +X2 +X3 in B will compute with Z1Z2Z3; furthermore, since β = π/4,

eiβ(X1+X2+X3)Z1Z2Z3e
−iβ(X1+X2+X3) =

(
3∏
i=1

cos 2β + i sin 2βX1

)
Z1Z2Z3 = −Y1Y2Y3 (3.8)

Thus, the expectation (3.7) becomes,

1

2
d123 〈s| e−iγCeiβBY1Y2Y3e−iβBeiγC |s〉 (3.9)

We can rewrite C, separating out the clause containing 1, 2, and 3,

C = C +
1

2
d123Z1Z2Z3 (3.10)

Now we can conjugate the Y1Y2Y3 with the contribution from the clause 123, the expectation (3.7)
becomes,

1

2
d123 〈s| e−iγC (cos(γd123)Y1Y2Y3 + sin(γd123)X1X2X3) eiγC |s〉 (3.11)

We will first evaluate,

〈s| e−iγCX1X2X3e
iγC |s〉 (3.12)

3

By inserting I =
∑
x∈{0,1} |x〉 〈x|, we get∑

z1,z2,z3

∑
z′1,z

′
2,z

′
3

〈s| e−iγC |z1, z2, z3〉 〈z1, z2, z3|X1X2X3 |z′1, z′2, z′3〉 〈z′1, z′2, z′3| eiγC |s〉 (3.13)

=
∑

z1,z2,z3

〈s| e−iγC |z1, z2, z3〉 〈−z1,−z2,−z3| eiγC |s〉 (3.14)

Now, we will more closely consider C. We will separate it into terms involving only Z1, etc and Z1Z2,
etc. Terms which involved none of 1, 2, and 3 will commute and cancel out. Thus, we can consider,

C = Z1C1 + Z2C2 + Z3C3 + Z1Z2C12 + Z1Z3C13 + Z2Z3C23 (3.15)

Note, both terms of Z1Z2, Z1Z3, and Z2Z3 will anticommute with X1X2X3. Thus, they will also be
cancelled out. Thus, only the first three terms of C contribute to the expectation; and the X1X2X3 term of
the expectation (3.12) becomes,

1

8

∑
z1,z2,z3

〈s| e−2γ(z1C1+z2C2+z3C3) |s〉 (3.16)

where |s〉 =
∏
a∈Q |+〉a, where Q contains the terms appearing in C1, C2, and C3. Let q be the size of Q,

which can be as large as 6D.
Writing out the above (3.16) and using some trigonometry identities, we get,

1

4
〈s| [cos(2γ(C1 + C2 + C3)) + cos(2γ(C1 − C2 − C3)) (3.17)

+ cos(2γ(−C1 + C2 − C3)) + cos(2γ(−C1 − C2 + C3))] |s〉 (3.18)

Using,

Ci =
1

2

∑
a<b

diabZaZb (3.19)

we can rewrite it (3.17) as,

1

4 · 2q
∑

za,a∈Q
[cos(γ(c1(z) + c2(z) + c3(z))) + cos(γ(c1(z)− c2(z)− c3(z))) (3.20)

+ cos(γ(−c1(z) + c2(z)− c3(z))) + cos(γ(−c1(z)− c2(z) + c3(z)))] (3.21)

We can think of each ci as random variables from a distribution of q binary variables, then the contribution
of the X1X2X3 term (3.12) to the original expectation, is the following expectation,

1

8
Ez[cos(γ(c1 + c2 + c3)) + cos(γ(c1 − c2 − c3)) (3.22)

+ cos(γ(−c1 + c2 − c3)) + cos(γ(−c1 − c2 + c3))] (3.23)

The contribution from the Y1Y2Y3 can be derived similarly and is,

1

8
Ez[sin(γ(c1 + c2 + c3)) + sin(γ(c1 − c2 − c3)) (3.24)

+ sin(γ(−c1 + c2 − c3)) + sin(γ(−c1 − c2 + c3))] (3.25)

Therefore, the expectation (3.7) becomes,

1

8
d123Ez[sin(γ(d123 + c1 + c2 + c3)) + sin(γ(d123 + c1 − c2 − c3)) (3.26)

+ sin(γ(d123 − c1 + c2 − c3)) + sin(γ(d123 − c1 − c2 + c3))] (3.27)

4

Now, we consider the taylor expansion of the above in terms of γ, singling out the linear term,

1

2
d2123γ + P k123(γ) +Rk123(γ) (3.28)

where

P k123(γ) =
1

8
d123

k∑
j=3,5,...

γj(−1)(j−1)/2

j!
Ez[(d123 + c1 + c2 + c3)j + ...] (3.29)

and

|Rk123| ≤
1

8

|γ|k+2

(k + 2)!
Ez[|d123 + c1 + c2 + c3|k+1 + ...] (3.30)

Note, that d2123 = 1 and P k123 starts with a cubic term and has degree k, where k will depend on D.
For any polynomial of degree 2, c, (e.g. ci), we have the following fact,

Ez[|c|k+2] ≤ (k + 1)k+2(Ez[c2])(k+2)/2 (3.31)

Since Ez[ci] = 0,

Ez[(d123 ± c1 ± c2 ± c3)2] = 1 + Ez[(c1 ± c2 ± c3)2] (3.32)

Since Ez[ci]2 =
∑
a<b diabdiab ≤ D,

Ez[(d123 ± c1 ± c2 ± c3)2] ≤ 1 + 9D (3.33)

Using the bound for polynomials of degree 2, this implies,

Ez[|d123 ± c1 ± c2 ± c3|k+2] ≤ (k + 1)k+2(1 + 9D)(k+2)/2 (3.34)

Therefore, using Stirling’s formula and e < 3,

|Rk123| ≤
1

8

|γ|k+2

(k + 2)!
(k + 1)k+2(1 + 9D)(k+2)/2 (3.35)

≤ 1

2

(
e(1 + 9D)1/2|γ|

)k+2

(3.36)

≤ (9D1/2|γ|)k+2 (3.37)

Note, the original expecation can be written,

〈−γ, π/4|C |−γ, π/4〉 =
∑
a<b<c

1

2
γ + P kabc(γ) +Rkabc(γ) (3.38)

=
m

2
γ + P k(γ) +

∑
a<b<c

Rkabc(γ) (3.39)

where P k(γ) is the sum of the m polynomials.
By the triangle inequality,

|〈−γ, π/4|C |−γ, π/4〉| ≥
∣∣∣m

2
γ + P k(γ)

∣∣∣− ∣∣∣∣∣ ∑
a<b<c

Rkabc(γ)

∣∣∣∣∣ (3.40)

≥
∣∣∣m

2
γ + P k(γ)

∣∣∣−m(9D1/2|γ|)k+2 (3.41)

5

To keep the negative term small, let,

|γ| ≤ 1

10D1/2
(3.42)

To lower bound the positive term, we use the following fact, for any constants ai and odd k,

max r = 0, 1, ..., k
∣∣xr + a2x

2
r + ...+ akx

k
r

∣∣ ≥ 1

k
(3.43)

where xr = cos(πr/k).
Thus, letting γr = 1

10D1/2 cos(πr/k),

max
r=0,1,...,k

∣∣∣m
2
γr + P k(γr)

∣∣∣ ≥ m

20D1/2k
(3.44)

Thus,

max
r=0,1,...,k

∣∣∣m
2
γr + P k(γr)

∣∣∣−m(9D1/2|γr|)k+2 ≥ m

20D1/2k
−m

(
9

10

)k+2

(3.45)

Letting k = 5 lnD, the right hand side is greater than,

m

101D1/2lnD
(3.46)

Therefore,

max
r=0,1,...,k

〈−γr, π/4|C |−γr, π/4〉 ≥
m

101D1/2lnD
(3.47)

where γr ∈
[−1
10D1/2 ,

1
10D1/2

]
, which completes the proof of the bound.

3.2 The Average Case

A common practice in bounding the performance of an algorithm is to bound the expected approximation
ratio in the average case; in other words, for a random problem. In this case for a fixed selection of equations,
we will consider a random assignment for the sums of the equations, i.e. dabc = (xa + xb + xc) mod 2. In
other words, if there are m equations, there will be 2m possible choices of all dabc, and we will pick one
uniformly at random.

Again considering the expectation for the term involving variables 1, 2, and 3, since the ci do not involve
d123, the expected value of d123 is 0. Thus, the expectation can be written as,

1

8
sin γEz[cos(γ(c1 + c2 + c3)) + cos(γ(c1 + c2 + c3)) (3.48)

+ cos(γ(c1 + c2 + c3)) + cos(γ(c1 + c2 + c3))] (3.49)

=
1

2
sin γEz[cos(γc1) cos(γc2) cos(γc3)] (3.50)

Now looking at the expectations of each of these terms with respect to diab for i ∈ {1, 2, 3},

Ed[cos(γci)] = Ed

[
γ
∑

3<a<b

diabzazb

]
(3.51)

=
1

2
Ed

[∏
3<a<b

exp(iγdiabzazb) +
∏

3<a<b

exp(−iγdiabzazb)

]
(3.52)

=
∏

3<a<b

cos(γzazb) (3.53)

=
∏

3<a<b

cos γ (3.54)

6

Note, the term does not depending on z. Since each ci depend on distinct d’s, the expected value over all
the d’s is,

1

2
sin γ(cos γ)D1+D2+D3 (3.55)

where Di is the number of terms in ci, which implies 0 ≤ D1 +D2 +D3 ≤ 3D. Therefore, the contribution
from every clause is,

m

2
sin γ cos3D γ ≤ Ed [〈−γ, π/4|C |−γ, π/4〉] ≤ m

2
sin γ (3.56)

Choosing γ to maximize the lower bound gives,

γ =
g

D1/2
(3.57)

For large D the lower bound is,

m

2

g

D1/2
exp

(
−3

2
g2
)

(3.58)

where setting g = 1/
√

3 gives,

m

2
√

3eD1/2
(3.59)

as desired.
It can be shown that for problem sizes of order m, the standard deviation of the expectation over all d’s

is of order
√
m. Thus, one can argue that with high probability, a “typical” instance will have at least the

above approximation ratio minus a term of order
√
m.

4 A Classical Approximation Algorithm and Bound

In repsonse, to the first paper on QAOA’s application to E3LIN2, i.e. Max-3XOR, which gave slightly worse
bounds than those showed above, Barak et. all [3] gave a classical algorithm, which improved upon these
bounds (and is still better than the above improved bounds for QAOA).

They showed that for any odd k, any instance of Max-kXOR, there is an efficient algorithm that finds an
assignment satisfying,

1

2
+ Ω

(
1√
D

)
(4.1)

of the equations, where D is the max number of equations any one variable can be in. In the “triangle-free”
case, they showed that there is an efficient algorithm which gives an assignment satisfying µ + Ω(1/

√
D),

where µ is the number of equations that would be satisfied in a random assignment.

4.1 Proof of lower bound for k = 3

Here we will give the proof from [3] for the case of k = 3. The more general proof can be found in the
paper. The paper uses a very common trick to lower bounding constraint satisfaction problems. First, they
decouple the first coordinate. In other words instead of finding one solution (e.g xi) for the n variables; one
finds two solutions, yi and zi. The yi are used for the first term of each equation and the zi are used for the
latter two terms. One can give a rounding scheme to convert, the yi and zi, into a single solution xi, which
only reduces the number of satisfied equations by a constant number. Finally, one can show that a random
assignment of zi (which then gives the yi) gives the required lower bound.

7

To show the above, we will need some facts about the relationship between boolean functions and Fourier
transformations. Any boolean function f : {±1}n → R can be represented by a multilinear polynomial, i.e.
the following Fourier expansion,

f(x) =
∑
s⊂[n]

f̂(S)xS , where xS =
∏
i∈S

xi (4.2)

Note, the following,

E[f(x)] = f̂(∅) (4.3)

‖f‖22 = E[f(x)2] =
∑
S

f̂(S)2 =⇒ Var[f(x)] =
∑
S 6=∅

f̂(S)2 (4.4)

inf
i

[f] =
∑
S3i

f̂(S)2 = E[(∂if)(x)2] (4.5)

Also, for any predicate P : {±1}r → 0, 1, r ≥ 2, we have Var[(∂iP)(x)] ≥ Ω(2−r) for all i.
Finally, we will use the fact that low-degree polynomials often achieve their expectation. Let f : {±}n → R

be a multilinear polynomial of degree at most k. Then P[f(x) ≥ E[f]] ≥ 1
4exp(-2k). In particular, for f2,

P[|f(x)| ≥ ‖f‖2] ≥ exp(−O(k)) (4.6)

which implies,

E[|f(x)|] ≥ exp(−O(k)) · ‖f‖2 ≥ exp(−O(k)) · stddev[f(x)] (4.7)

In general, given an instance of the problem and an assignment x ∈ {±1}n, the number of satisfied
constraints is,

m∑
l=1

Pl(XSl
) (4.8)

which can be thought of as a multilinear function with degree at most k (in our case, 3).
To simplify things, we will instead consider the fraction of satisfied constraints (i.e. divide the above by

m). Furthermore, we will replace Pl with P l,

Pl = Pl − E[Pl] = Pl − P̂l(∅) (4.9)

In this way, P l can be thought of as the advantage over a random assignment.
Therefore, given an instance, we will defined the associated polynomial B(x) by,

B(x) =
1

m

m∑
l=1

P l(xSl
) (4.10)

Thus, in our case of k = 3, using the Fourier expansion,

B(x) =
∑
|S|=3

B̂(S)xS =
∑

i,j,k∈[n]

aijkxixjxk (4.11)

where B̂(S) ∈ {± 1
2m , 0} depending on whether or not a constraint with those variables exists in the instance.

Note, aijk = 1
6 B̂({i, j, k}).

We will use the trick of “decoupling” the first coordinate, i.e. the algorithm will consider B̃(y, z) =∑
i,j,k aijkyizjzk for some yl and zl. The algorithm will produce a good assignment for B̃ and round to

produce as assignment for the original using the following randomized rounding scheme,

w.p.
4

9
, xi =

{
yi w.p. 1

2

zi w.p. 1
2

w.p.
4

9
, xi =

{
yi w.p. 1

2

−zi w.p. 1
2

w.p.
1

9
, xi = −yi (4.12)

8

Thus, the expectation is equal to,

E[B(x)] =
4

9

∑
i,j,k

aijk

(
yi + zi

2

)(
yj + zj

2

)(
yj + zj

2

)
(4.13)

+
4

9

∑
i,j,k

aijk

(
yi − zi

2

)(
yj − zj

2

)(
yj − zj

2

)
+

1

9

∑
i,j,k

aijk(−yi)(−yj)(−yk) (4.14)

=
1

9

∑
i,j,k

aijk(yizjzk + ziyjzk + zizjyk) (4.15)

=
1

3
B̃(y, z) (4.16)

Now, we will write B̃(y, z) =
∑
i yiGi(z), where Gi(z) =

∑
j,k aijkzjzk. The algorithm just needs to find

an assignment for z such that
∑
i |Gi(z)| is large; then, we can take yi = sgn(Gi(z)).

The algorithm simply chooses a random z ∈ {0, 1}n uniformly. Thus, E[Gi(z)
2] =

∑
j<k(2aijk)2 =

1
9 infi[B]. Applying the fact about low-degree polynomials achieving their expectations gives, E[|Gi(z)|] ≥
Ω(1) ·

√
infi[B]. Finally, since infi[B] = deg(i)/4m2,

E

[∑
i

|Gi(x)|

]
≥ Ω(1) ·

∑
i

√
deg(i)

m
≥ Ω(1) ·

∑
i

deg(i)

m
√
D

=
Ω(1)√
D

(4.17)

Since
∑
i |Gi(x)| is bounded by 1/2, by Markov’s inequality, the algorithm can find a z achieving

∑
i |Gi(x)| ≥

Ω(1/
√
D) with high probability after O(

√
D) many trials of z. Then, as stated above, y can be chosen to

give B̃(y, z) ≥ Ω(1/
√
D), which gives the correct lower bound for the expectation of B(x).

References

[1] Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. ”A quantum approximate optimization algorithm.”
arXiv preprint arXiv:1411.4028 (2014).

[2] Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. ”A quantum approximate optimization algorithm
applied to a bounded occurrence constraint problem.” arXiv preprint arXiv:1412.6062v2 (2015).

[3] Barak, Boaz, et al. ”Beating the random assignment on constraint satisfaction problems of bounded
degree.” arXiv preprint arXiv:1505.03424 (2015).

9

	Background
	A Bounded Occurrence Constraint Problem
	The Approximation Ratio for QAOA1
	Proof of Bound
	The Average Case

	A Classical Approximation Algorithm and Bound
	Proof of lower bound for k = 3

