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Verification of Quantum Programs
Motivation
I quantum programs: less intuitive and error-prone.

I comparing to classical: harder task with less study.
I QPL practice: Quipper, QWIRE, ScaffCC, Q#, qiskit,

Forrest, ProjectQ, ...

Issues with Verifications

I The object of verification?
I Traditional, lightweight, and full verification?

Possible Long-term Target

I Scalable and Principled Verification of Quantum Programs!
I a library of verified quantum programs; automated tools

to assist programmer; ...
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Quantum While-Language

Syntax

A core language for imperative quantum programming

S ::= skip | q := |0〉
|S1; S2

| q := U[q]
| if (�m ·M[q] = m→ Sm) fi
| while M[q] = 1 do S od



Operational Semantics

A configuration: 〈S, ρ〉
I S is a quantum program or E (the empty program)
I ρ is a partial density operator in

Hall =
⊗
all q

Hq



Operational Semantics

(Sk) 〈skip, ρ〉 → 〈E, ρ〉

(Ini)
〈q := |0〉, ρ〉 → 〈E, ρ

q
0〉

I type(q) = Boolean:

ρ
q
0 = |0〉q〈0|ρ|0〉q〈0|+ |0〉q〈1|ρ|1〉q〈0|

I type(q) = integer:

ρ
q
0 =

∞

∑
n=−∞

|0〉q〈n|ρ|n〉q〈0|



Operational Semantics

(Uni) 〈q := U[q], ρ〉 → 〈E, UρU†〉

(Seq)
〈S1, ρ〉 → 〈S′1, ρ′〉

〈S1; S2, ρ〉 → 〈S′1; S2, ρ′〉

Convention : E; S2 = S2.

(IF) 〈if (�m ·M[q] = m→ Sm) fi, ρ〉 → 〈Sm, MmρM†
m〉

for each outcome m



Operational Semantics

(L0)
〈while M[q] = 1 do S od, ρ〉 → 〈E, M0ρM†

0〉

(L1)
〈while M[q] = 1 do S, ρ〉 → 〈S; while M[q] = 1 do S, M1ρM†

1〉



Quantum 1-D Loop Walk

QW ≡c := |L〉;
p := |0〉;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|.



Denotational Semantics

Semantic function of quantum program S:

JSK : D(Hall)→ D(Hall)

JSK(ρ) = ∑{|ρ′ : 〈S, ρ〉 →∗ 〈E, ρ′〉|} for all ρ ∈ D(Hall)



Observation:

tr(JSK(ρ)) ≤ tr(ρ)

for any quantum program S and all ρ ∈ D(Hall).

I tr(ρ)− tr(JSK(ρ)) is the probability that program S
diverges from input state ρ.
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Definitions

I A quantum predicate is a Hermitian operator (obsevable) P
such that 0 v P v I.

[1] E. D’Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

I A correctness formula is a statement of the form:

{P}S{Q}

where:
I S is a quantum program
I P and Q are quantum predicates.
I Operator P is called the precondition and Q the postcondition.



Definitions

1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if
tr(Pρ) ≤ tr(QJSK(ρ)) for all ρ.

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if
tr(Pρ) ≤ tr(QJSK(ρ)) + [tr(ρ)− tr(JSK(ρ))]

for all ρ.



Proof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{|0〉q〈0|P|0〉q〈0|+ |1〉q〈0|P|0〉q〈1|}q := |0〉{P}

type(q) = integer :

{
∞

∑
n=−∞

|n〉q〈0|P|0〉q〈n|}q := |0〉{P}

(Axiom Uni) {U†PU}q := U[q]{P}



Proof System for Partial Correctness

(Rule Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule IF)
{Pm}Sm{Q} for all m

{∑m M†
mPmMm}if (�m ·M[q] = m→ Sm) fi{Q}

(Rule LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule Ord)
P v P′ {P′}S{Q′} Q′ v Q

{P}S{Q}



Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if `PD {P}S{Q}.



Quantum 1-D Loop Walk

QW ≡c := |L〉;
p := |0〉;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

1
1

0

Operator Definition

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|.



Proof System for Total Correctness

Let P be a quantum predicate and ε > 0. A function

t : D(Hall) (density operators)→N

is called a (P, ε)-ranking function of quantum loop:

while M[q] = 1 do S od

if for all ρ:
1. t(JSK(M1ρM†

1)) ≤ t(ρ);
2. tr(Pρ) ≥ ε implies t(JSK(M1ρM†

1)) < t(ρ)



Proof System for Total Correctness

(Rule LT)

(1) {Q}S{M†
0PM0 + M†

1QM1}
(2) for any ε > 0, tε is a (M†

1QM1, ε)−ranking
function of loop

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S od{P}



Theorem (Soundness and Completeness)
For any quantum program S and quantum predicates P Q,

|=tot {P}S{Q} if and only if `TD {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011
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Super-Operator Labelled Graphs
A super-operator labelled graph is a 4-tuple G = 〈H, L, l0,→〉:

1. H is a Hilbert space;
2. L is a finite set of locations;
3. l0 ∈ L is the initial location
4. transition relation

l E→ l′

with l, l′ ∈ L, E a super-operator: for every l ∈ L,

∑{|E : l E→ l′ for some l′|} ≈ I .

Control-Flow Graph of Quantum Programs
A quantum program P can be represented by a graph GP.
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Quantum 1-D Loop Walk

QW ≡c := |L〉;
p := |0〉;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|.



Invariants
I A set Π of paths is prime if for each

π = l1
E1→ ...

En−1→ ln ∈ Π

its proper initial segments l1
E1→ ...

Ek−1→ lk /∈ Π for all k < n.

I Let G = 〈H, L, l0,→〉, Θ a quantum predicate (initial
condition), l ∈ L. An invariant at l is a quantum predicate O
such that for any density operator ρ, any prime set Π of
paths from l0 to l:

tr(Θρ) ≤ 1− tr (EΠ(ρ)) + tr (OEΠ(ρ))

where EΠ = ∑ {|Eπ : π ∈ Π|} .



Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at lPout in SP,
then

|=par {Θ}P{O}



Inductive Assertion Maps

I Given G = 〈H, L, l0,→〉 with a cutset C and initial
condition Θ.

I An assertion map is a mapping η from each cutpoint l ∈ C
to a quantum predicate η(l).

I Πl: the set of all basic paths from l to some cutpoint.
I lπ: the last location in a path π.
I An assertion map η is inductive if:

I Initiation: for any density operator ρ:

tr(Θρ) ≤ 1− tr
(
EΠl0

(ρ)
)
+ ∑

π∈Πl0

tr (η(lπ)Eπ(ρ)) ;

I Consecution: for any density operator ρ, each cutpoint
l ∈ C:

tr(η(l)ρ) ≤ 1− tr
(
EΠl(ρ)

)
+ ∑

π∈Πl

tr (η(lπ)Eπ(ρ)) .



Theorem (Invariance)

If η is an inductive assertion map, then for every cutpoint l ∈ C,
η(l) is an invariant at l.



Invariant Generation Problem

Given G = 〈H, L, l0, Θ,→〉 with a cutset C ⊆ L. For each
cutpoint l ∈ C, find a quantum predicate η(l) such that
η : l 7→ η(l) is an inductive map.



Reduce to a SDP (Semi-Definite Programming) Problem

I Assume C = {l0, l1, ..., lm}.
I Write Oi = η(li) for i = 0, 1, ....m.

I E∗ij = ∑{|E∗π : basic path li
π⇒ lj |} for i, j = 0, 1, ..., m.



Theorem
Invariant Generation Problem is equivalent to find complex
matrices O0, O1, ..., Om satisfying the constraints:

0 v∑
j
E∗0j(Oj) + A,

0 v∑
j 6=i
E∗ij (Oj) + (E∗ii − I)(Oi) + Ai (i = 0, 1, ..., m),

0 v Oi v I (i = 0, 1, ..., m),

where: {
A = I−∑j E∗0j(I)−Θ,

Ai = I−∑j E∗ij (I) (i = 0, 1, ..., m).



Quantum 1-D Loop Walk

QW ≡c := |L〉;
p := |0〉;
while M[p] = no do

c := H[c];
c, p := S[c, p]

od

Operator Definition

S =
n−1

∑
i=0
|L〉〈L| ⊗ |i	 1〉〈i|+

n−1

∑
i=0
|R〉〈R| ⊗ |i⊕ 1〉〈i|.



Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {l0, l3} with l3 = lout. Θ = I. Invariants O0
and O3 satisfy the following constraints:

0 v E∗00(O0) + E∗03(O3)−Θ, (1)
0 v (E∗00 − I)(O0) + E∗03(O3), (2)
0 v (E∗33 − I)(O3)− (I− E∗33(I)), (3)
0 v O0, O3 v I (4)

E00 = E00 ◦ E†
00, E03 = E03 ◦ E†

03, E33 = I ,
E00 = S(H⊗ Ip)(Ic ⊗Mno), E03 = Ic ⊗Myes, and Ic, Ip identities.

Solution
I O3 = Ic ⊗ |1〉〈1| → tr(O3ρout) ≥ tr(Θρin) = 1, i.e., always

terminates at the position |1〉 regardless of the input state
ρ0. (O0 omitted.)
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Solving Constraints: Use SDP solvers!

Applications

I Quantum walk on an n-circle. [3]
I Quantum Metropolis sampling on n-qubits. (1-qubit in [3])
I Repeat-Until-Success.
I Quantum Search.
I Quantum Bernoulli Factory.
I Recursively written Quantum Fourier Transformation.

[3] M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum
programs: characterisations and generation, POPL 2017.
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Summary

Toward Automatic Verification of Quantum Programs

I scalable and principled verification!

Existing Techniques

I Quantum While-language (c. control, q. data).
I Quantum Hoare logic.
I Invariant Generation by SDPs.

Progress & Targets

I expressibility: quantum functionality, codespace, ......
I scalability: succinct or template representations, quantum

verification, ......



Thank you!
Q & A



Quantum states

I The state space of a quantum system is a Hilbert spaceH, i.e.
a complex vector space with an inner product that is
complete in the sense that every Cauchy sequence has a
limit.

I For finite n, an n-dimensional Hilbert space is essentially
the space Cn of complex vectors.

I A pure quantum state is represented by a unit vector, i.e. a
vector with length 1.

I We use Dirac’s notation |ϕ〉, |ψ〉, ... to denote pure states.



Qubits

I A Quantum bit (qubit) is the quantum counterpart of bit.
I The state space of a qubit is the 2-dimensional Hilbert

space.
I A pure state of qubit is:

|ψ〉 = α|0〉+ β|1〉 =
(

α
β

)
with |α|2 + |β|2 = 1.

I A qubit can be in the basis states:

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
I A qubit can also be in a superposition of |0〉, |1〉, e.g.

|+〉 = 1√
2
(|0〉+ |1〉) = 1√

2

(
1
1

)
|−〉 = 1√

2
(|0〉 − |1〉) = 1√

2

(
1
−1

)



Mixed states
I A mixed state is represented by an ensemble

{(p1, |ψ1〉), ..., (pk, |ψk〉)}

meaning that the system is in state |ψi〉 with probability pi.
I It is a quantum generalisation of a probability distribution

over states.



Density matrices

I In the n-dimensional Hilbert space Cn, an operator is
represented by an n× n complex matrix A.

I The trace of an operator A is tr(A) = ∑i Aii (the sum of the
entries on the main diagonal).

I A positive semidefinite matrix ρ is called a partial density
matrix if tr(ρ) ≤ 1; in particular, a density matrix ρ is a
partial density matrix with tr(ρ) = 1.



Mixed states = density matrices

I Matrix |ψ〉〈ψ| is the multiplication of column vector |ψ〉
and the row vector 〈ψ| (the conjugate and transpose of
|ψ〉).

I For any mixed state {(p1, |ψ1〉), ..., (pk, |ψk〉)},

ρ = ∑
i

pi|ψi〉〈ψi|

is a density operator
I For any density operator ρ, there is a mixed state
{(p1, |ψ1〉), ..., (pk, |ψk〉)} such that

ρ = ∑
i

pi|ψi〉〈ψi|.

I In particular, a pure state |ψ〉 is identified with the density
operator ρ = |ψ〉〈ψ|.



Mixed states = density matrices

I Mixed state of a qubit:

{(2
3

, |0〉), (1
3

, |−〉)} with |−〉 = 1√
2
(|0〉 − |1〉)

I Density matrix:

ρ =
2
3
|0〉〈0|+ 1

3
|−〉〈−| = 1

6

(
5 −1
−1 1

)



Unitary matrices

I Dynamics of a closed quantum system is described by a
unitary matrix:

|ψ〉 7→ U|ψ〉
I A matrix U is unitary if U†U = I, where U† is the

conjugate and transpose of U
I Hadamard matrix

H =
1√
2

(
1 1
1 −1

)
is an unitary operator in the 2-dimensional Hilbert space

I H|0〉 = |+〉, H|1〉 = |−〉



Quantum gates – one-qubit gates

I Pauli gates:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
I Hadarmard gate:

H =
1√
2

(
1 1
1 −1

)
I Rotation about x−axis of the Bloch sphere:

Rx(θ) =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)



Quantum gates – two-qubit gate

I The controlled-NOT (CNOT) gate:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


I CNOT generates entanglement: separable state |+ 0〉 is

transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+ 0〉) = 1√
2
(|00〉+ |11〉)



Super-operators

I Dynamics of an open quantum system is described by a
super-operator:

ρ 7→ E(ρ)
I A super-operator is a mapping E from partial density

operators to themselves:
I completely positive;
I tr(E(ρ)) ≤ tr(ρ) for all ρ.

I A super-operator can be seen as a quantum counterpart of
a transformation of probability distributions.



Kraus representation

I Löwner order: A v B if and only if B−A is positive
semidefinite.

I Each super-operator E has a Kraus representation:

E(ρ) = ∑
i

EiρE†
i

for all density matrices ρ, where the set {Ei} of matrices
satisfies the sub-normalisation condition: ∑i E†

i Ei v I
I We often write E = ∑i Ei ◦ E†

i .



Quantum measurements

I The way to extract information about a quantum system is
quantum measurement.

I In quantum computation, measurement is used to read out
a computational result.

I A measurement is modelled as a set of operators M = {Mm}
with ∑m M†

mMm = I.
I If a quantum system was in pure state |ψ〉 before the

measurement, then:
I the probability that measurement outcome is λ:

p(m) = ||Mm|ψ〉||2

where || · || is the length of vector.
I the state of the system after the measurement:

Mm|ψ〉√
p(m)



Quantum measurements

I If we perform a measurement M on a system in state ρ,
then:
I an outcome m is observed with probability

p(m) = tr
(
MmρM†

m
)
;

I after that, the system will be in state MmρM†
m/p(m).

I A major difference between classical and quantum
systems:
I Measuring a classical system does not change its state.
I The state of a quantum systems is changed after measuring it.



Quantum measurements – example

I The measurement on a qubit in the computational basis
{|0〉, |1〉} is M = {M0, M1}:

M0 = |0〉〈0| =
(

1 0
0 0

)
, M1 = |1〉〈1| =

(
0 0
0 1

)
I If we perform M on a qubit in state |ψ〉 = α|0〉+ β|1〉:

I the probability that we get outcome 0 is |α|2;
I the probability that we get outcome 1 is |β|2.

I If we perform M on a qubit in (mixed) state

ρ =
2
3
|0〉〈0|+ 1

3
|+〉〈+| = 1

6

(
5 1
1 1

)
I the probability that we get outcome 0 is

p(0) = tr (M0ρM0) =
5
6 and then the quibit is in state |0〉.

I Outcome 1 is obtained with probability p(1) = 1
6 and after

that the qubit is in |1〉.
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