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Verification of Quantum Programs
Motivation

» quantum programs: less intuitive and error-prone.
» comparing to classical: harder task with less study.

» QPL practice: Quipper, QWIRE, ScaffCC, Q#, giskit,
Forrest, ProjectQ), ...

Issues with Verifications

» The object of verification?

» Traditional, lightweight, and full verification?

Possible Long-term Target

» Scalable and Principled Verification of Quantum Programs!

» alibrary of verified quantum programs; automated tools
to assist programmer; ...
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Quantum While-Language

Syntax

A core language for imperative quantum programming

S ==skip | g:=|0)
1S1; 52
|g:= Ulq]
|if (Om-M[gl=m —S,) fi
| while M[g] =1do S od



Operational Semantics

A configuration: (S, p)
» Sis a quantum program or E (the empty program)
> pis a partial density operator in

Har = Q) Hy
all g



Operational Semantics

(5K) (skip,p) — (E, p)

» type(q) = Boolean:
P0 = 10)4(010|0)4 {01 + [0)4(1|p[1)4 (0]

> type(q) = integer:

P = ZIO np[n)q (0]

n=—oo



Operational Semantics

(Uni)

(Seq)

(7 := Ulg],p) — (E,UpU)

(§1,0) = (S1,0")
(51:52,0) — (51 S2,0")

Convention : E; S, = S».

(if (Om-M[gq] =m — Sy) fi,p) — (Sm, MpM?)

for each outcome m



Operational Semantics

LO
(£0) (while M[7] = 1do S od,p) — (E, MopM})

(1) — — +
(while M[g] = 1do S,p) — (S; while M[g] = 1do S, M;pM]



Quantum 1-D Loop Walk

QW =c:=|L);

p=10);
while M[p] = no do

Operator Definition

n—1 n—1
S = ZO LWL @ io 1)+ Y |R)(R| @ |i® 1)(i.
1=l i=0



Denotational Semantics

Semantic function of quantum program S:

[S] : D(Han) — D(Han)

[S1(p) = }_{le": (S,p) =" (E,p")|} forall p € D(Han)



Observation:

tr([S](p)) < tr(p)
for any quantum program S and all p € D(Hy).

» tr(p) — tr([S](p)) is the probability that program S
diverges from input state p.
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Definitions

> A quantum predicate is a Hermitian operator (obsevable) P
suchthat0 C P C L.

[1] E. D'Hondt and P. Panangaden, Quantum weakest
preconditions, Mathematical Structures in Computer Science
2006.

> A correctness formula is a statement of the form:

{P}s{Q}

where:
> Sis a quantum program
» Pand Q are quantum predicates.
» Operator P is called the precondition and Q the postcondition.



Definitions

1. {P}S{Q} is true in the sense of total correctness:

ot {P}S{Q}

if

tr(Pp) < tr(Q[S](p)) for all p.
2. {P}S{Q} is true in the sense of partial correctness:

|:par {P}S{Q}/

if

tr(Pp) < tr(Q[SI(p)) + [tr(p) — tr([S](p))]
for all p.



Proof System for Partial Correctness

(Axiom Sk) {P}Skip{P}

(Axiom Ini)
type(q) = Boolean :

{10)4{0[P[0)4{0] 4 [1)4{0IP|0)4 (1]} := |0){P}

type(q) = integer :

{Z [1)q(0[P|0)q (n[ }q := |0){P}

n=—o00

(Axiom Uni) {utpulg := U[g){Pr}



Proof System for Partial Correctness

(Rule Seq) {P}si{Q} {Q}S:{R}

{P}51;52{R}
{Py,}Sm{Q} for all m
(Rule IF) (X Mi Py }if (Gm-M[g] = m — S,) 6{Q}
{Q}S{M{PMy + MTQM; }
(Rule LP) {M{PM, + MIQM; }while M[g] = 1 do S{P}
(Rule Ord) PC P {P}S{Q} QCQ

{Pys{Q}



Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P, Q,

=par {P}S{Q} if and only if Fpp {P}S{Q}.



Quantum 1-D Loop Walk

QW =c:=|L);

p=10);
while M[p] = no do

Operator Definition

n—1 n—1
S = ZO LWL @ io 1)+ Y |R)(R| @ |i® 1)(i.
1=l i=0



Proof System for Total Correctness

Let P be a quantum predicate and € > 0. A function
t: D(Han) (density operators) — IN
is called a (P, €)-ranking function of quantum loop:
while M[j] =1do S od

if for all p:

1. t([S](M1pMY)) < t(p);
2. tr(Pp) > € implies t([S](M1pM})) < t(p)



Proof System for Total Correctness

(1) {Q}S{M;PMo + M{QM: }
(2) for any € > 0, t. is a (MIQM)j, €)—ranking

(Rule LT) function of loop

{M{PM, + MIQM; }while M[7] = 1do S od{P}



Theorem (Soundness and Completeness)

For any quantum program S and quantum predicates P Q,

=it {P}S{Q} if and only if Frp {P}S{Q}.

[2] M. S. Ying, Floyd-Hoare logic for quantum programs, ACM
Transactions on Programming Languages and Systems 2011
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Super-Operator Labelled Graphs
A super-operator labelled graph is a 4-tuple G = (H,L,ly, —=):
1. H is a Hilbert space;
2. L is a finite set of locations;
3. Iy € L is the initial location
4. transition relation
E
I =1

with [,I' € L, £ a super-operator: for every ! € L,

Y {l€ 151 forsome I'|} ~ T.



Super-Operator Labelled Graphs
A super-operator labelled graph is a 4-tuple G = (H,L,ly, —=):
1. H is a Hilbert space;
2. L is a finite set of locations;
3. Iy € L is the initial location
4. transition relation
E
I =1

with [,I' € L, £ a super-operator: for every ! € L,

Y {l€ 151 forsome I'|} ~ T.

Control-Flow Graph of Quantum Programs
A quantum program P can be represented by a graph Gp.



Quantum 1-D Loop Walk

QW =c:= |L); po\. lo
p:=1[0); \
while M[p] = no do "~
C .= H[SC][, ] 1 I. ?J‘Iy(?s [C®1\I"OH@{' lo
C,p = C, out . p
P ) Iy o ~
od 1 '

Operator Definition

n—1 n—1
S = 20 LWL @ io 1)+ Y |R)(R| @ |i® 1)(i.
i= i=0



Invariants

> A set IT of paths is prime if for each
ﬂ:lli...gn—;llnén

its proper initial segments g gk—S] I, ¢ Il forall k < n.

» Let G = (H,L, 1y, —), © a quantum predicate (initial
condition), I € L. An invariant at | is a quantum predicate O
such that for any density operator p, any prime set IT of
paths from [y to I:

tr(@p) < 1—tr(&n(p)) +tr (On(p))

where &r = Y {|&€r : m € T1|}.



Theorem (Partial Correctness)

Let P be a quantum program. If O is an invariant at I” , in Sp,
then

|:pur {®}P{O}



Inductive Assertion Maps

» Given G = (H,L,ly, —) with a cutset C and initial
condition ©.

v

An assertion map is a mapping # from each cutpoint ! € C
to a quantum predicate 7 (/).

v

I1;: the set of all basic paths from I to some cutpoint.

v

I: the last location in a path 7.
An assertion map 7 is inductive if:
» Initiation: for any density operator p:

v

tr(@p) <1—tr (&n () + L tr(n(l)Ex(p);

7T€HIO

» Consecution: for any density operator p, each cutpoint
leC

trin(Dp) < 1—tr (&, (p)) + Y tr (n(1x)Ex(p))-

mell;



Theorem (Invariance)

If 77 is an inductive assertion map, then for every cutpoint!/ € C,
#7(1) is an invariant at .



Invariant Generation Problem

Given G = (H,L,1y,®, —) with a cutset C C L. For each
cutpoint ! € C, find a quantum predicate (1) such that
1 : 1 — n(l) is an inductive map.



Reduce to a SDP (Semi-Definite Programming) Problem
» Assume C = {ly, 11, ..., I }.
» Write O; = 5(l;) fori =0,1,...m.
> & = Y{|E% : basic path [; & li|} fori,j=0,1,..,m.



Theorem
Invariant Generation Problem is equivalent to find complex
matrices Oy, Oy, ..., Oy, satisfying the constraints:

0C 28{{](0]) + A,
]
0C ;51‘7(01‘) + (& —-I)(0;)+A;i (i=0,1,..,m),
1
0C ]Oi CI(i=0,1,..m),
where:

A=T-Y;& (-0,
Aj=1-Y&1) (i=0,1,..,m).



Quantum 1-D Loop Walk

QW =c:= |L); po\. lo
p:=1[0); \
while M[p] = no do "~
C .= H[SC][, ] 1 I. ?J‘Iy(?s [C®1\I"OH@{' lo
C,p = C, out . p
P ) Iy o ~
od 1 '

Operator Definition

n—1 n—1
S = 20 LWL @ io 1)+ Y |R)(R| @ |i® 1)(i.
i= i=0



Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {ly, I3} with I3 = lpy. ©® = L. Invariants Oy

and Os satisfy the following constraints:
0 C &(Oo) + &3(03) — ©,
0 (&g —Z)(Oo) + &03(0s3),
0C (&5 —1)(0s) = (I=&5(I)),
0C Oy, 03 E1

Ego = Ego © E}y, Eos = Eoz 0 Efy, Ez3 = Z,

@™
)
®)
(4)

Ego = S(H® I,) (I ® Myo), Epz = It ® Myes, and I, I, identities.



Invariant SDPs for Quantum 1-D Loop Walk

Choose cut-set C = {ly, I3} with I3 = lpy. ©® = L. Invariants Oy

and Os satisfy the following constraints:
0 C &(Oo) + &3(03) — ©,
0 (&g —Z)(Oo) + &03(0s3),
0C (&5 —1)(0s) = (I=&5(I)),
0C Oy, 03 E1

Ego = Ego © E}y, Eos = Eoz 0 Efy, Ez3 = Z,

@™
)
®)
(4)

Ego = S(H® I,) (I ® Myo), Epz = It ® Myes, and I, I, identities.

Solution

» 03 =1.®|1)(1] = tr(Ozpout) > tr(Opiy) =1, i.e., always
terminates at the position |1) regardless of the input state

00. (Op omitted.)



Solving Constraints: Use SDP solvers!

Applications

» Quantum walk on an n-circle. [3]

» Quantum Metropolis sampling on n-qubits. (1-qubit in [3])
» Repeat-Until-Success.

» Quantum Search.

» Quantum Bernoulli Factory.

» Recursively written Quantum Fourier Transformation.

[3] M. S. Ying, S. G. Ying and X. Wu, Invariants of quantum
programs: characterisations and generation, POPL 2017.
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Summary

Toward Automatic Verification of Quantum Programs

» scalable and principled verification!

Existing Techniques

» Quantum While-language (c. control, q. data).
» Quantum Hoare logic.

» Invariant Generation by SDPs.

Progress & Targets

» expressibility: quantum functionality, codespace, ......

» scalability: succinct or template representations, quantum
verification, ......



Thank you!
Q&A



Quantum states

» The state space of a quantum system is a Hilbert space H,, i.e.
a complex vector space with an inner product that is
complete in the sense that every Cauchy sequence has a
limit.

» For finite n, an n-dimensional Hilbert space is essentially
the space C" of complex vectors.

> A pure quantum state is represented by a unit vector, i.e. a
vector with length 1.

» We use Dirac’s notation | @), |1}, ... to denote pure states.



Qubits

v

A Quantum bit (qubit) is the quantum counterpart of bit.

v

The state space of a qubit is the 2-dimensional Hilbert
space.

v

A pure state of qubit is:

!W=M®+MD:<2) with [a2 4 B = 1.

v

A qubit can be in the basis states:

v

A qubit can also be in a superposition of |0), [1), e.g.

1 1 1
=50+ =—5( 1)

TR T IP OO Y A S



Mixed states

» A mixed state is represented by an ensemble

{1 [91)), s (Prs [91)) }

meaning that the system is in state |¢;) with probability p;.

» Itis a quantum generalisation of a probability distribution
over states.



Density matrices

» In the n-dimensional Hilbert space C", an operator is
represented by an n x n complex matrix A.

» The trace of an operator A is tr(A) = Y; A;; (the sum of the
entries on the main diagonal).

» A positive semidefinite matrix p is called a partial density
matrix if tr(p) < 1; in particular, a density matrix p is a
partial density matrix with tr(p) = 1.



Mixed states = density matrices

» Matrix |¢) (| is the multiplication of column vector |¢)
and the row vector (| (the conjugate and transpose of

).
» For any mixed state {1, 91)), o (rs [1)) 1

p =Y pilgi) (wil

is a density operator

» For any density operator p, there is a mixed state

{(p1,|191)), - (P, |)) } such that
o= Y pilgi){wil.

» In particular, a pure state |ip) is identified with the density

operator p = [) (.



Mixed states = density matrices

» Mixed state of a qubit:

{( /10)), (;,|—>)}With|—>—7(|0> 1))

3

» Density matrix:

2 1
— 210)(0] + 51 -)(~| =

N =
N
e
[y
_ |
—_
~_



Unitary matrices

» Dynamics of a closed quantum system is described by a
unitary matrix:

) = Uly)

» A matrix U is unitary if utu =1, where U is the
conjugate and transpose of U

» Hadamard matrix

1=l )

is an unitary operator in the 2-dimensional Hilbert space
> H|0) = |+), H[1)=[-)



Quantum gates — one-qubit gates

» Pauli gates:
01 0 —i 1 0
(Vo) =0 0) 2= (0 5

» Hadarmard gate:
1 1 1
i=s(h )

» Rotation about x—axis of the Bloch sphere:

0 f i O
COS 5 —181n 5
wor= (9, ot )

—1SIn bl COSs )



Quantum gates — two-qubit gate

» The controlled-NOT (CNOT) gate:

1000
0100
CNOT = 000 1
0010

» CNOT generates entanglement: separable state | + 0) is
transformed to EPR (Einstein-Podolsky-Rosen) pair:

CNOT(|+0)) = —(|OO> |11))

g



Super-operators

» Dynamics of an open quantum system is described by a
super-operator:
pr E(p)
> A super-operator is a mapping & from partial density
operators to themselves:
» completely positive;
» tr(E(p)) < tr(p) forall p.
» A super-operator can be seen as a quantum counterpart of
a transformation of probability distributions.



Kraus representation

» Lowner order: A C B if and only if B — A is positive
semidefinite.

» Each super-operator £ has a Kraus representation:
E(p) = ) EipE]
1

for all density matrices p, where the set {E;} of matrices
satisfies the sub-normalisation condition: }; EfEi CI

» We often write £ = Y, E; o E].



Quantum measurements

» The way to extract information about a quantum system is
quantum measurement.

» In quantum computation, measurement is used to read out
a computational result.

» A measurement is modelled as a set of operators M = {M,, }
with ¥, MI M, = L.

» If a quantum system was in pure state |ip) before the
measurement, then:

> the probability that measurement outcome is A:

p(m) = ||Muly)|?

where || - || is the length of vector.
> the state of the system after the measurement:
M)

p(m)



Quantum measurements

» If we perform a measurement M on a system in state p,
then:

» an outcome m is observed with probability
p(m) = tr(MuoM},);
» after that, the system will be in state M,,oM}, /p(m).

» A major difference between classical and quantum
systems:
» Measuring a classical system does not change its state.
» The state of a quantum systems is changed after measuring it.



Quantum measurements — example

» The measurement on a qubit in the computational basis
{]0), 1)} is M = {My, M1 }:

My =100 = (o o ). m=lwai=(g )

» If we perform M on a qubit in state |¢) = «|0) + B|1):

» the probability that we get outcome 0 is |a|?;
» the probability that we get outcome 1 is | |2.

» If we perform M on a qubit in (mixed) state
2 1 1/5 1
p= 30+ 3100 =5 (5 1)

> the probability that we get outcome 0 is
p(0) = tr (MopMy) = g and then the quibit is in state |0).
» Outcome 1 is obtained with probability p(1) = ¢ and after
that the qubit is in |1).
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