
Automatic decomposition of quantum circuits onto small quantum

machines

Benjamin Black, Onur Kulaksizoglu, Lillian Huang

December 2019

1 Introduction

In the last few years, there has been a great deal of progress in making real world quantum computers, but
the number of physical qubits is remains too small to run larger problem sizes on these computers. The
consequence is that the few practical uses of these computers have been problems that only require small
amount of working memory to solve. The question we wish to explore relates to how to run algorithms
which have larger memory requirements. In particular, there are some theoretical results that promise that
if there is low global connectivity between that memory, the circuit can be decomposed into smaller, more
densely connected problems that can be run with a smaller numbers of physical qubits. We wish to explore
the more applied side of this area by looking at algorithms and trying to exploit features which allow lower
qubit requirements.

2 Overview of Project

A primary goal of this project is to build an end-to-end system which is able to take in a representation of
an arbitrary quantum circuit and accurately simulate the circuit using a quantum machine with n qubits
(or a simulation of a quantum machine with n qubits).

The system will have a few components. First, we digest a description of some quantum circuit. Then,
the quantum circuit will be transformed into its associated tensor network. Then, the tensor network will
be partitioned into some number of connected components. The edges between these components will be
transformed into classical channels using Pauli observables as described in [4], producing a large set of
classical-quantum tensor networks. The tensor networks will be serialized into a sequence of quantum cir-
cuits, each of which representing one evaluation of one component. Then these quantum circuits will be run
and measured in order to estimate the correct output of the original quantum circuit.

In our system, the quantum circuits will be evaluated using quantum circuit simulation software for
testing purposes, but ideally, the system should be able to run on a real quantum circuit with minimal
modification. We present a few initial tests as a proof of concept at the end of the report, and compare the
resulting state distribution of our pipeline with the that of the non-decomposed circuit. We show that we
do begin to converge to the correct state distribution within the complexity limits stated in [4].

3 Partitioning

The runtime for this decomposition algorithm is exponential in the number of edges between decomposed
circuits. Therefore, it is important that we have a well-performing, relatively efficient graph partitioning
algorithm for decomposing our tensor network. However, it is known that graph partitioning is NP-hard,
and so we need to look for approximations and heuristic solutions for this problem. For the project we
experimented with three different partitioning algorithms: a genetic algorithm, a greedy algorithm, and the
METIS software package for graph partitioning [3].

1

3.1 METIS

Serial Graph Partitioning and Fill-reducing Matrix Ordering (METIS) is a library for graph partitioning.[3]
METIS does partitions on undirected graphs and focuses on reducing the minimum cut between the different
clusters while keeping a balance between the size of the clusters. It is reasonably fast and seems commonly
used, that’s why we picked METIS and tuned its parameters it to work with our circuits.

Objective parameter of METIS, minimum cut, suits our objective function but the load balancing was
unnecessary for our case. We also needed to change it such that no sub-circuit requires more qubits than the
available qubits, which is a different constraint than any classical graph partitioning parameters. Details of
this modification are given in the implementation section.

3.2 Genetic algorithm

Another approach we tried was a genetic graph partitioning algorithm. Genetic algorithms are a general
class of heuristic solutions to optimization problems inspired by biological evolution. Genetic algorithms are
characterized by having a population of solutions which reproduce at by “crossing over” and “mutating”. To
keep the population size reasonable, the worst solutions are thrown away each “generation” (reproduction
step). Genetic algorithms are similar to other types of general non-convex optimization techniques like sim-
ulated annealing, but are differentiated by the idea of crossover, where solutions are generated by combining
two different possible solutions.

3.2.1 Algorithm details

Each solution is a list of partition labels, each of which corresponding to a node in the tensor network. The
population is just a collection of K of these labelings.

• Initialization: Randomly assign nodes to partition labels for all K solutions.

• Mutation: Pick an element of the population S, and a number n of nodes to reassign. Say there are
p distinct partitions in the solution S. Reassign those nodes uniformly to the p partition labels.

• Crossover: Randomly take two elements from the population, S1, S2. The output solution S is
initialized with S1. For each partition pn ∈ S2, assign it in to the output solution with probability
1
2 . There is a slight issue with the fact that similar partitioning may have very different partition
labelings, so to mitigate this problem p2 is added to S, the partition label of those nodes is assigned
to be sampled from the labelings of S1, with probability weighted by the labels in S of the nodes of p2

• Selection: Partitions which use too many qubits are eliminated, and the K elements the high with
smallest communication are selected.

In addition, since it does not increase the communication cost to divide a partitioning into connected
components, an additional step is applied after the initialization, mutation and crossover steps which divides
each partitioning into connected components. This turns out to dramatically improve the solutions given,
as it effectively disallows a whole class of low quality solutions.

3.3 Greedy Algorithm

We also implemented a variant of the greedy algorithm we mentioned in the midterm report. In this approach
we first reduce the network, by removing all one-qubit gates. Then we assign a separate cluster for each
gate. After this initialization, in each step we merge two “mergeable” clusters with the highest score / cost.

3.3.1 Score Between the Two Clusters

The score is simply calculated by summing associativity scores between all of the neighbour nodes of the
two clusters. In our case, every neighbour relation is actually a parent-child relation, since a qubit is either

2

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩
H

∣0⟩

H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩

H

∣0⟩ H

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOTCNOT

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

CNOT
Rz -0.743043

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043 CNOT

Rx 0.754082

Rz -0.743043

CNOT CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rz -0.743043

CNOT

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043

CNOT Rx 0.754082

Rz -0.743043
CNOT Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rz -0.743043 CNOT Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

(a) Output of the genetic algorithm after 100 generations.

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩
H

∣0⟩

H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩

H

∣0⟩ H

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOTCNOT

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

CNOT
Rz -0.743043

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043 CNOT

Rx 0.754082

Rz -0.743043

CNOT CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rz -0.743043

CNOT

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043

CNOT Rx 0.754082

Rz -0.743043
CNOT Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rz -0.743043 CNOT Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

(b) Output of the genetic algorithm after 500 generations.

Figure 1: Genetic partitioning solutions
These are outputs of the genetic algorithm run with the same parameters, but we can see that we get much better
results after 500 generations than with only 100 generations (with fewer connections between separate clusters).

an input or output between two neighbour nodes.

The associativity score between two neighbour nodes considers all the children of the child node until
an arbitrary depth limit, and if these children have a common qubit with the parent node, we increase the
associativity score according to its distance to the parent node. Pseudo-code for associativity score is given
in the Appendix; Algorithm 1.

This associativity score is designed so that it also considers the further interactions between the two
nodes, so if they are going to share some qubits in the future, this increases their likelihood to merge. For
example, in Fig. 2, node 3 has a higher score with node 1 than its other parent node 2. This is because the
child node of node 3, the node 5, shares qubits withs node 1.

1
3

5

2
4

Figure 2: A case with 5-qubit simulation with 3 available qubits. After creating separate clusters for all
gates, the cluster of node 3 needs to be merged and it is merged with the node 1.

3

3.3.2 Cost and Qubit Limit

The cost of merging the two clusters is defined as the number of required qubits for the new merged cluster
minus the number of required qubits for the larger of the two smaller clusters. We also add a small cost to
prevent division by 0 in the algorithm.

The number of required qubits for each cluster can be defined as 2 ∗m− e, where m denotes the number
of nodes in the cluster and the e refers to the number of edges between the members of the cluster.

3.3.3 Greedy Partitioning Results and Complexity

In Figure 3b, we see the partitioning of the greedy algorithm. The complexity of the algorithm is polynomial
and it is quite fast. It merges almost all the nodes, and in each step it iterates through some cluster pairs to
see which one has the best connections. Naively, this can be implemented in O(n3), but this can be reduced,
since not all clusters are connected to each other. If we use a sparse matrix to keep cluster scores, complexity
is around O(n2 log(n)), where n is the number of CNOT gates, since the only two-qubit gates we have are
CNOT gates.

4 Implementation

The main deliverable in this project is the code that does this simulation. This code is on GitHub at
https://github.com/lilhuang/quantum_circuit_decomp. At a high level, the code takes in a quantum
circuit described in qTorch’s qasm format [1], and a number of qubits of the target machine. It then parti-
tions the circuit, and simulates it using the algorithm described in [4] using the QuEST library [2] to do the
simulation. Exact usage is described on the README on the GitHub page.

In this section, we describe some of the details of the algorithms used.

4.1 Parameters for genetic algorithm

In the results, the following parameters were used for the genetic algorithm. Some testing suggested that
the algorithm is not too sensitive to these parameters, as long as the population size, and the number of
effective generations is sufficiently large. Figure 1a shows an example of what happens when the number of
effective generations is too low.

Effective Generations =
#Generations×min(#Crossovers,#Mutations)

population size

Parameter Value
Population size 5000
Number of generations 5000
Mutations per generation 50
Crossovers per generation 50

4.2 Metis parameters

In an attempt to make METIS suitable for the task, a number of parameters were changed. In particular,
since the communication factor is the limiting factor, not the size of the largest partition, the load balance
factor was set to be higher, allowing more imbalanced loads. Also, computation time is not an issue because
the graphs are very small, so parameters which trade off computation time and quality were set to strongly
prefer quality.

4

Parameter Value Description
METIS OPTION UFACTOR 10 Allowed partition sizes are (1 + x)/1000, where x is

the value.
METIS OPTION NITER 100 Specifies the number of iterations for the refinement

algorithms at each stage of the uncoarsening process.
METIS OPTION NCUTS 100 The number of different partitionings that it will

compute. The final partitioning is the one that
achieves the best edgecut or communication volume.

METIS OPTION NSEPS 100 Specifies the number of different separators that it
will compute at each level of nested dissection. The
final eparator that is used is the smallest one.

Note that the balancing load factor METIS OPTION UFACTOR had unpredictable results, getting
better results on some graphs and worse on others when set higher. And all results were still worse than the
genetic algorithm. This reinforced the feeling that METIS is simply is a heuristic that is not well suited for
this problem.

5 Results

5.1 Partitioning results

To evaluate the partitioning solutions, we took some random circuits from the qTorch “examples” folder and
did some initial tests for partitioning these circuits. The results for these are illustrated in Table 1.

Table 1: Comparison of partitioning solutions on varying qubit limitations

genetic score genetic time(s) metis score metis time(s) greedy score greedy time(s)
rand30-25 8 6.42713 11 1.9283 13 0.019721
rand20-12 12 4.78207 14 1.24236 15 0.002955
rand20-19 4 4.18873 8 1.24167 4 0.002953

Note: rand30-25 means that it is decomposing one of qTorch’s random circuits with 30 qubits into subcircuits with

at most 25 qubits. The score is the communication cost between the decomposed circuits.

As you can see, the genetic algorithm generally performs the best of the possible solutions, but it is the
slowest. The greedy strategy does very well in the rand20-19 case, where the number of qubits required is
very close to the actual number of qubits, but poorly in the other cases. However, it is very fast. Metis
is slowed down substantially by the parameter changes discussed in the implementation section, and also
does quite poorly compared to the genetic algorithm. Visualizations of the output of these three algorithms
on a particular circuit are displayed in Figure 3. Overall, it seems that to solve this NP-hard partitioning
problem, using flexible strategies which give better solutions when given more computation time are required
to get the best possible results.

5

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩
H

∣0⟩

H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩

H

∣0⟩ H

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOTCNOT

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

CNOT
Rz -0.743043

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043 CNOT

Rx 0.754082

Rz -0.743043

CNOT CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rz -0.743043

CNOT

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043

CNOT Rx 0.754082

Rz -0.743043
CNOT Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rz -0.743043 CNOT Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

(a) Partitioning results of the genetic algorithm.

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩
H

∣0⟩

H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩

H

∣0⟩ H

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOTCNOT

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

CNOT
Rz -0.743043

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043 CNOT

Rx 0.754082

Rz -0.743043

CNOT CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rz -0.743043

CNOT

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043

CNOT Rx 0.754082

Rz -0.743043
CNOT Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rz -0.743043 CNOT Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

(b) Partitioning results of the greedy algorithm.

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩
H

∣0⟩

H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩ H

∣0⟩

H

∣0⟩ H

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOT

CNOTCNOT

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043 CNOT

CNOT

CNOT
Rz -0.743043

CNOT

Rz -0.743043 CNOT

CNOT

Rz -0.743043

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

CNOT

Rz -0.743043
CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043 CNOT

Rx 0.754082

Rz -0.743043

CNOT CNOT

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rz -0.743043

CNOT

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043
CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

CNOT

Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rz -0.743043

CNOT Rx 0.754082

Rz -0.743043
CNOT Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

CNOT

Rz -0.743043 CNOT Rx 0.754082

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043
CNOT

Rz -0.743043

CNOT

Rx 0.754082

Rx 0.754082

Rz -0.743043

CNOT
Rx 0.754082

Rx 0.754082

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

∡

(c) Partitioning results after using METIS.

Figure 3: Visualization of various graph partitioning algorithms for the tensor network. Different colors
correspond to different partitions, red lines indicate the cut edges between partitions.

5.2 Simulation results

In order to test that our implementation correctly implements the algorithm in the paper, we had to make
sure the approximation bound and runtime is the same as in [4]. To test this, we took a qasm file from the
qTorch “examples” folder that represents the following circuit:

6

|0〉 H •

|0〉 •
|0〉 •
|0〉 •
|0〉 •
|0〉 •
|0〉 •
|0〉

The expected output state of this circuit is 1√
2
|00000000〉+ 1√

2
|11111111〉. This circuit suits our purposes

nicely, because it has a relatively simple output state distribution (if we take a measurement of the output
state, half the time we should get all 0 qubits and half the time we should get all 1s), which makes it easy
to verify that our pipeline converges to the correct result. Furthermore, the output state of this circuit
has entangled qubits, so we know that if the final output distribution of our pipeline is correct, then it has
overcome the added complication of decomposing a circuit with an entangled-qubit output.

Theorem 1 in [4] states that, once we partition a large circuit into smaller clusters with only K con-
nections of communication between separate clusters, we should be able to achieve ε error after running
the algorithm O(24K/ε2) times, with probability 2

3 . Figure 4 shows how many simulations we’d theoreti-
cally need to run in order to reach a certain error bound with probability 2

3 in the blue line. The orange
line shows what our actual error was after running that number of simulations. We can see that our error
rate stayed very close to the theoretical value, even dipping below the expected error at 10,000+ simulations.

Figure 4: Expected and actual errors on different simulation sizes, according to [4].

In our example, we partitioned the above circuit into clusters of at most 4 qubits, which required
K = 2 connections between clusters. Thus, to achieve an error of only ε = 1

3 = 0.33, we ran the pipeline
28/(1/9) = 2304 times to verify that our system does achieve this bound.

7

Figure 5: Probability distribution of measuring a state after running our pipeline on the given circuit, versus
the expected probability distribution of measuring a state on the non-decomposed circuit.

Figure 5 shows the state distribution that we sampled after running our pipeline 2304 times. We can see
that the measured state distribution (in orange) is converging to the expected state distribution (in blue).
Although we measure a total of 8 states instead of only 2 as expected, we can see that the probability of
measuring a state other than |00000000〉 or |11111111〉 is starting to be suppressed, while the probability of
measuring those states is close to 0.5. Our final error was 0.3681, which is comparable to our goal of ε = 0.33
but is a little high. The reason for this is because when we decompose our circuit at the K “cutting points,”
we do not sum over all 8K possibilities of our circuit decomposition; instead, we randomly sample from the
set 8 observables {Oi}8i=1 and average over them to “unbatch” the sampling process. However, although we
do not exactly hit our error goal within the number of runs specified in Theorem 1 of [4], we come close
enough that this small tweak in the algorithm seems to be a worthwhile change for the increased flexibility.

6 Discussion

6.1 Challenges

The problem with quantum simulation using classical information is that it takes exponential time. Though
using small quantum computers to help simulate large ones does mitigate the problem to some degree (on
certain problems, at least) the practicality of any exponential time method must be called into question.
Once the broad questions of practicality are addressed, a real world system should make every attempt to
be as efficient as possible,

6.1.1 Practicality

This project has one challenge which overshadows all the others: its practicality. There are reasons to be be-
lieve that this approach is deeply impractical. We know that there are many important problems in quantum
computing which require densely connected quantum circuits to solve. Shor’s algorithm is just one example.
In fact, any algorithm which has an exponential time quantum supremacy over classical computers will not
be efficiently simulated with classical estimations of quantum information. Thus, as the number of qubits
gets a small factor larger than the physical quantum computer’s, the runtime will become unreasonable.
Many other problems in quantum computing, including much of quantum machine learning, are solvable in
polynomial time by classical computers, so a quantum-classical system which runs in exponential time is

8

uninteresting.

Peng et. al. [4] suggests that one promising use case is the simulation of clustered quantum systems.
This sort of system should be well suited for this approach because it decomposes at a global level because
its physical clustering gives rise to only weak interactions between clusters, but it does not decompose at a
local level, so purely classical computers will struggle with the simulation. In the future, our system can be
tested on this case, and we can see if the results from [4] can be reproduced using our pipeline. But we also
hope that there are other important problems that are suitable for this approach, as it would not be enough
to only find a single use case for this algorithm.

6.2 Efficiency

When an algorithm has parts which run in exponential time, small gains in efficiency of these parts can be
the difference between a practical system and in impractical one. Our project is useful in large part because,
an automated system can often find structures that allow for efficiency gains even in complex problems. We
tried several different approaches for partitioning and found that the best approach is to use a slow genetic
algorithm that performs better when given more time and space resources, rather than a fast but fixed
quality approximation.

References

[1] E. Schuyler Fried, Nicolas P. D. Sawaya, Yudong Cao, Ian D. Kivlichan, Jhonathan Romero, and Alán
Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PLOS ONE, 13(12):e0208510, Dec
2018.

[2] Tyson Jones, Anna Brown, Ian Bush, and Simon Benjamin. Quest and high performance simulation of
quantum computers, 2018.

[3] George Karypis and Vipin Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering
System, Version 4.0. http://www.cs.umn.edu/~metis, 2009.

[4] Tianyi Peng, Aram Wettroth Harrow, Maris Ozols, and Xiaodi Wu. Simulating large quantum circuits
on a small quantum computer. 2019.

A Pseudo Code for Greedy Partitioning Algorithm

Algorithm 1 Quantum Circuit Decomposer

procedure Calculate Associativity(parent, child)
arbitrary depth limit← 5
associativity ← 0
current level ← parent.level
gates ← empty queue push(gates, child)
while gates not empty do

tgate ← pop(gates)
depth ← tgate.level - parent.level
if depth ≤ arbitrary depth limit then

push(gates, tgate.children)
if tgate qubit1 used by parent then

associativity ← associativity + 2−depth

if tgate qubit2 used by parent then
associativity ← associativity + 2−depth

return associativity

9

