
Quantum Random Access Memory

Aaron Green and Emily Kaplitz

Fall 2019

Abstract

qRAM is a necessary component for larger quantum computers.
In this paper, we discuss the background, usage, and practicality of
qRAM. We also show the importance of qRAM in quantum algo-
rithms. Lastly, we will study how qRAM might be implemented in
the future.

1 Introduction

Many algorithms throughout different fields of computing require the stor-
age and use of memory. A ubiquitous form of memory storage in classical
computing is random access memory (RAM). Similar to classical comput-
ing, many quantum computing algorithms also depend on the use of stored
states. There are two main ways to achieve this. First, an algorithm that
combines classical and quantum computing, only using quantum states for
very short periods of time. Second, using quantum random access memory
(qRAM) [4]. This paper surveys the background, usage, and practicality of
qRAM, including why it is useful and how it can be implemented.

qRAM is necessary for larger quantum computers that may arise in the
future, rather than the current ones which are much smaller in size, and will
function very similarly to classical RAM. It is composed of the same three
components, Memory, an Input Register, and an Output Register. How-
ever unlike classical RAM, qRAM will use qubits for its Input and Output
Registers, and possibly its memory array as well [10].

In section 2, we will go over the background of qRAM. This includes going
over classical RAM, the development of qRAM, and typical architectures and

1

Figure 1: SRAM and DRAM Circuit designs [1]

their issues. In section 3, we will review the importance of qRAM by studying
three different algorithms. For our last section, we will discuss the candidate
systems for implementation of the architecture Bucket Brigade, state of the
art advancements, recent experiments, and open questions.

2 Background

2.1 Classical RAM

Memory consists of cells that can store information [3]. Each cell has an
address, or wordline, to find the cell location. A memory with n cells has
an address of 0 to n − 1 bits. All cells contain the same amount of bits for
the address. Memory that can be read and written is called Random Access
Memory, or RAM. RAM is made up of three parts: Memory, Input Register
and Output Register. There are two types of RAM: static and dynamic.
Static RAM, SRAM, retains data bits in memory as long as power is being
supplied to the computer. It is used in cache which is small fast memory.
SRAM has faster access then DRAM, but it is more expensive. DRAM
stores bits in only a capacitor and transistor making it simple and cheap.
However, it needs to be refreshed. Both RAM architectures have a problem
with leakage of memory, however, different techniques are used to prevent
memory from being lost. Circuits for SRAM and DRAM can be found in
figure 1.

2

2.2 Development of qRAM

In order to access memory in a quantum system there needs to be a quan-
tum equivalent to classical RAM. This quantum equivalent is referred to as
qRAM. qRAM uses the same three components as classical RAM: Mem-
ory Array, Input Register, and Output Register. In qRAM, the Input and
Output Registers are composed of qubits, while the Memory Array can be
classical or quantum depending on the application.

An effective implementation of qRAM can create exponential speedup for
many algorithms as well as being required for the implementation of other
algorithms. qRAM also leads to new quantum computation primitives for
use in quatum cryptography and quantum networking.

Although RAM and qRAM are essential for developing efficient, modern
algorithms, both memory regimes are exponentially expensive when accessing
one of 2n memory slots where n represents the number of bits in a memory
address. This need for so many slots can cause a high decoherance rate for
qRAM which has slowed its development. Previously, for a d-dimensional
lattice, many architectures required O(N

1
d) operations to access a memory

location.

2.3 Typical RAM Architectures and Issues

qRAM works by using quantum superposition to perform memory access
[10]. In order to access a superposition of the memory cells the address
register, a, must contain a superpostion of the address. The qRAM returns a
superpostition of data in a data register, d, correlated to the address register.
Let Dj be the content of the jth memory cell. This is shown in the formula
below. ∑

j

ψj |j〉a →
∑
j

ψj |j〉a |Dj〉j

In order to understand qRAM, let us first look at RAM in the classical
sense through the Basic RAM Addressing Scheme [10]. Let N be the number
of memory cells. These cells are placed at the end of a bifurcation graph with
n levels, as shown in figure 3. If we want to find the value of the jth bit
in the address register we do it by following a path to the jth level of the
graph. We do this by taking the left path if we read in a 0 and the right
path if we read in a 1. Each of the N possible values of the address register
is a unique path to a memory cell. The classical implementation requires

3

Figure 2: Bifurcation Graph used in RAM Addressing [10]

using a transistor at each of the two paths at each node of the graph. Thus,
each address bit controls the transistors at a particular level of the graph.
This leads to an exponential number of transistors being activated for each
memory call.

Now lets consider using this scheme in terms of quantum computing [10].
n qubits of the address register control n quantum control lines. These act
on the entire level of the bifurcation graph. At each branch we avoid the
signals along the left path if we read in a 0 and avoid the signals along the
right path if we read in a 1. Each binary address corresponds to a set of
switches that find a unique path through the graph associated with that
address. The connected superposition of the address is entangled with a
set of switches that find a superposition of paths through the graph. O(N)
quantum transistors are entangled with the desired memory. A quantum bus
is used in the memory call to follow the super position of paths through the
graph. The state of the bus changes according to the quantum information
in the memory slot through a Controlled-NOT gate. Disconnection from the
bus’s position in the address register is done by returning to the root by the
path taken.

This is a very impractical way of implementing qRAM as to query a
superposition of memory cells, the address qubits are entangled with O(N)
switches or quantum gates. This super position is susceptible to decoherence
and thus requires quantum error correction whenever the rate is bigger than
2−n which can be very costly. We will discuss better architectures in later
sections.

4

2.3.1 Quantum Bus

A Quantum Bus is a signal that is sent back and forth in a binary tree that
represents the RAM [9]. The bus can be routed through every through every
possible path of the binary tree. It is characterized by some internal degree of
freedom that can be used to store and process information. If each memory
cell contains a single bit of information, the quantum bus is a single qubit
with a copy operation being a single Controlled-NOT gate. Each memory
cell can contain d bits of information. We can transfer information bit by bit
with a two dimensional quantum bus that is repeated d times.

2.3.2 Fanout

In the Fanout scheme [9], the index register gives the direction to reach the
memory cell needed. The index register is a binary string. Each bit tells
which direction to take at a bifurcation of the tree. If a bit in the string
is a 0, then all the switches will point up. Fanout schemes are common
in classical RAM chips. In a classical implementation, RAM Chips that
translate schemes into electronic circuits where the switches of the binary
tree are replaced by a pair of transistors. The last few bits of the index
register are connected to an exponentially large number of transistors. This
does not translate well to the quantum setting because of quantum coherence.
If we were to turn this scheme into qRAM, we would do this by turning it into
a reversible process and making sure that quantum coherence is preserved.
The kth qubit still needs to control 2k bifurcations of the tree. The gates
required to control this scheme is costly in qRAM because of decoherence
and noise. If a single gate out of the entire scheme is decohered, the fidelity
of the system is reduced by a factor of two [10]. However, this scheme can
identify failures as the memory gets large.

In order to use this scheme, a quantum bus is implemented. At a bifur-
cation in the path of the tree, the direction is chosen using quantum gates.
To change this into quantum we would do a unitary operation controlled by
a qubit from the Input Register. The amount of transformations along the
tree convert a binary value from the index register into a position of the bus.
The bus follows more than one path in superposition and interacts with all of
the memory cells relative to the path if the index register contains a superpo-
sition of multiple addresses. After accessing the memory cell, the quantum
coherence correlation needs to be undone. This is done by running the trans-

5

lation that was first done in reverse. However, this means that the bus can
not be sent back through the binary tree as each bifurcations decorrelates
the value of the control qubit in the bus.

2.3.3 Bucket Brigade

About 10 years ago, Biamonte, et al. developed a new architecture for qRAM
called “Bucket Brigade” which lowers that complexity to O(logN) [9], expo-
nentially decreasing access complexity.
This architecture can be applied to both classical and quantum systems,
although it is unnecessary for classical systems due to the already existing
scaled systems which are not as efficient, but do not need to be. Instead of
encountering binary switches of “0” or “1” going down a path to memory
locations, trits are used. These trits can take the values of “wait”, “left”,
and “right”. Initially, each trit is in the “wait” state. As bits representing
location are encountered, each trit in a “wait” state will change to “left” or
“right” based on the value of that bit being 0 or 1. Translating this to a
quantum system, we can take the values of “wait”, “left”, and “right” to
simply be quantum states |wait〉, |left〉, and |right〉.
At first glance, this architecture is very similar to the Fanout scheme in the
way that it involves a tree of paths that determines which memory location
is accessed to read from or write to. The core difference in this architecture
is the two phase operation of Bucket Brigade. Rather than accessing and re-
trieving/writing information in one step, Bucket Brigade initializes its path
before sending in a Quantum Bus. As mentioned previously, the coherence
complexity of accessing one memory cell using Bucket Brigade is O(logN)
because only that many qubits are not in the |wait〉 state. Therefore the
complexity of accessing r memory cells is O(rlogN) [10]. In this architec-
ture, if a fraction ε of gates are decohered, then the average fidelity of the
system is O(1 − εlogN) [10]. This is much better than the fidelity of the
Fanout scheme.

3 Uses in Algorithms

3.1 Quantum Searching on a Classical Database [6]

The quantum searching on a classical database problem is as follows: we have
an unstructured list or database and we want to find a particular element in

6

that list. Let N = 2n be the amount of items each with a length of l bits.
Our database looks like {d1, ...dN}. We want to find a particular element
s in the list. For a quantum computer to solve this problem, we need two
units a CPU and memory. The CPU consists of four registers: an n qubit
index register initialized to |0〉, an l qubit register initialized to the state |s〉
that remains in that state for all of the computation, an l qubit data register
initialized to |0〉, and a 1 qubit register initialized to |0〉−|1〉√

2
. The memory

unit can be implemented in two different ways. One way is to have a memory
containing N = 2n cells with l qubits each and a database entry |dx〉. This
is qRAM using only quantum concepts. Another way to do this is to use
classical memory with N = 2n cells of l bits each and containing dx as the
database entry. We can address these cells using a superposition of multiple
values which allow us to load the cell values from memory. This is qRAM
using classical and quantum concepts.

3.2 Collision Finding [2]

The r-collision problem states that given n and a black box function f is
either one-to-one or r-to-one given d inputs, where r divides d. In order for
an algorithm to solve this problem, we need to be able to access information
from previous queries. The quantum collision problem uses a unitary black
box that allows the use of adaptive queries. This problem can be solved in

O

(
3

√
d
r
log
(
d
r

))
.

So, the quantum computer would need to access the outcomes from its
memory. This is were qRAM is needed in order to solve the problem. We
need to check the query outcomes against eachother to see if all outcomes
are distinct when all queries are distinct.

3.3 Element-Distinctness in the Classical and
Quantum Setting [12]

The element distinctness problem is described as determining if all elements
in a list are distinct. Classically, we can solve this problem by using sorting
algorithms. If we sort a list f , we can see if any elements in the list repeat by
traversing the list once. A quantum computer solves distinctness faster then
sorting because the collision problem is equivalent to the element distinctness
problem. There is no need for sorting in a quantum setting. As we discussed

7

above, we need a way to access previous outcomes, thus qRAM is a solution
to quickly access the queries that we have made. Without qRAM, we would
not be able to solve the collision problem or the element distinctness problem.

4 Possible Implementation and

Modern Developments

4.1 Candidate Systems for Implementation of Bucket
Brigade

Since the turn of the century, several different physical systems to implement
quantum computation have been implemented. Bucket Brigade qRAM is a
structure which operates coherently on a small number O(logN) of a large
amount O(N) of first-neighbor connected qubits [10]. Two candidate sys-
tems that have been proposed for this architecture are optical lattices and
Josephson arrays [8] [14].

One way to think about Bucket Brigade in a slightly more, but still
not entirely, experimental setting is with photons, with state encoded in
polarization, and trapped ions, with state encoded in energy level [10]. Each
node in the structure is initially an ion in its ground state. As photons travel
through the structure, if they encounter an ion in the |wait〉 state, then the
photon will excite the ion to either the left state or the right state depending
on the polarization. If the photon encounters an ion in the |left〉 or |right〉
state, it will be scattered by the ion and continue on its path. After the
path through the structure has been created, a photon in the |0〉 traverses
through the graph and eventually pick up the state in the memory cell. It
then deflects back through the graph. This process allows the ion to excite to
a |left′〉 and |right′〉 state, which eventually will decay back into the |wait〉
state. This process is a Raman process [10].

4.2 State of the Art

One way to speed up quantum RAM access has very recently been shown
to be a process of quantum forking [7]. This process is similar to classical
process forking, when one large process is split into several smaller ones.
This process can speed up calculations such as ensemble averaging and inner
product calculations. The most basic example of this quantum forking is for

8

inner product calculation in the form of the swap test, with which quantum
forking drops the number of qRAM calls by a factor of about 1

2
.

One other very modern aspect of qRAM is the implementation in hard-
ware. It has been shown that acoustic resonators with high quality factors
can act as effective quantum memories [11]. This architecture is called circuit
quantum electrodynamics (cQED).

4.3 Recent Experiment

Earlier this year, a group from Tsinghua University in China created a 105
qubit random access memory using 210 memory cells using dual-rail repre-
sentation of qubits [13]. Like some of the ways mentioned earlier in this
paper, the group used photonic pulses as bus qubits and atomic spin states
as memory qubits. The setup uses temporal multiplexing storing all of its
qubits onto a solid-state ensemble. The ensemble was composed of 87Rb
atoms that have been trapped and cooled down.
Rather than using a Fanout or Bucket Brigade architecture, this setup uses a
pair of crossed acoustic-optical deflectors. After setting up the memory, the
group tested the fidelity of each qubit after a storage time of 1.38 [13]. Note
that other implementations hope to achieve storage times of up to the mil-
lisecond scale using methods such as nitrogen vacancy defects in diamond [5].

In Figure 3 we see a visualization of the average fidelity of each memory
cell across several tests for several different stored states. We can see that
there are noticeable changes in fidelity across the physical location of qubits.
We can gather from this experiment that though we can store qubits and
access them after a reasonable amount of time, the fidelity of qubits still has
room to be improved. Part of the reason for the lack of fidelity away from
the center of the memory qubits may be due to the optical setup used to
multiplex the optical beams when accessing each cell.

4.4 Open Questions

The biggest open question is how can a working qRAM be built. It might
be possible to create a hybrid quantum system that uses superconducting
qubits and spin qubits [5]. However, a working qRAM has not been created.

Another question that needs to be worked on are finding more uses for
quantum forking to lower qRAM calls by even a constant amount [7].

9

Figure 3: Fidelity mapping of each memory cell [13]

There is still more that can be discovered for the reading and writing
onto qRAM. Right now, there is a lot of theory and not as many physical
implementations. So, a natural question would be how reading and writing
in the physical setting would work. Further, the question of how rewriting
would work. It is possible to change stored states into the states that we now
want to store, however that would require a lot more work.

Lastly, how the physical implementation of Bucket Brigade would work is
still unknown. In theory, Bucket Brigade runs faster and more efficient than
fanout schemes. It is an interesting question to see how much more efficient
Bucket Brigade runs in the physical world.

5 Conclusion

There are still a lot of open questions when it comes to qRAM. We know
that it is a necessity as quantum computers grow. However, the theory for
architectures like Fanout and Bucket Brigade still needs to be implemented in
the real world context. Recent experiments have shown what qRAM might
look like, but there is still a lot of work to be done. However, it is clear
that qRAM is vital for quantum computers as they begin to solve harder

10

problems.

References

[1] Structured computer organization. https://www.geeksforgeeks.org/different-
types-ram-random-access-memory/.

[2] Aram W. Harrow Andrew M. Childs and Pawel Wocjan. Weak fourier-
schur sampling, the hidden subgroup problem, and the quantum collision
problem. STACS 2007, 1:598–609, February 2007.

[3] Todd Austin Andrew S. Tanenbaum. Structured Computer Organiza-
tion. Pearson, 2013.

[4] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost,
Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature,
549:195 EP –, Sep 2017.

[5] Miles Blencowe. Quantum ram. Nature, 468:44–45, Nov 2010.

[6] Michael A. Nielsen Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, Cambridge, UK, 2010.

[7] Francesco Petruccione June-Koo Kevin Rhee Daniel K. Park. Circuit-
based quantum random access memory for classical data. Scientific
Reports, 9:3949, 2019 Feb.

[8] L.-M. Duan, E. Demler, and M. D. Lukin. Controlling spin exchange
interactions of ultracold atoms in optical lattices. Phys. Rev. Lett.,
91:090402, Aug 2003.

[9] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Architectures
for a quantum random access memory. Phys. Rev. A, 78:052310, Nov
2008.

[10] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum ran-
dom access memory. Phys. Rev. Lett., 100:160501, Apr 2008.

11

[11] Connor Hann, Chang-Ling Zou, Yaxing Zhang, Yiwen Chu, Robert
Schoelkopf, Steven Girvin, and Liang Jiang. Hardware-efficient quan-
tum random access memory with hybrid quantum acoustic systems. 06
2019.

[12] Mark Heiligman Peter Hoyer Frederic Magniez Miklos Santha
Harry Buhrman, Christoph Durr and Ronald de Wolf. Quantum algo-
rithms for element distinctness. SIAM Journal on Computing, 34:1324–
1330, Sep 2000.

[13] N. Jiang, Y.-F. Pu, W. Chang, C. Li, S. Zhang, and L.-M. Duan. Exper-
imental realization of 105-qubit random access quantum memory. npj
Quantum Information, 5(1):28, 2019.

[14] Alessandro Romito, Rosario Fazio, and C. Bruder. Solid-state quantum
communication with josephson arrays. Phys. Rev. B, 71:100501, Mar
2005.

12

