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Abstract

The variational quantum eigensolver (VQE) is a hybrid quantum-classical algorithm
that can be used to study the eigenvalues and corresponding eigenvectors of a physical
system. In this work, we review and provide reference to key background in quantum
chemistry for each step of the VQE algorithm, as well as demonstrate the effectiveness
of the algorithm on a sparse matrix simulator. With the simulator, we compare several
chemically motivated ansätze: generalized unitary coupled cluster singles and doubles
(UCCGSD), singlet unitary coupled cluster singles and doubles (UCCSD), and a modi-
fied version of k unitary pair coupled cluster (k-UpCCSD) which employs singlet single
excitations and sparse singlet pair double excitations.

1 Introduction

Current quantum devices are too small and noisy to reliably execute deep circuits or to
employ error correction schemes that provide enough logical qubits for useful computations.
As we approach the NISQ era in quantum computing, it will be possible to take advantage
of limited quantum resources by strategically delegating classically intractable tasks in an
algorithm to a quantum coprocessor. The variational quantum eigensolver (VQE), first
proposed and demonstrated on a photonic quantum coprocessor in 2014 [1], is one such
quantum-classical hybrid algorithm that was developed with this paradigm in mind.

Our goal in this project was to reach the level of familiarity with the VQE algorithm
required to build a software pipeline that simulates VQE experiments in order to compare
the effectiveness of multiple ansätze in computing the ground state energy of multiple small
molecules. We succeeded in doing this using several open source software packages for quan-
tum chemistry: OpenFermion [2], PySCF [3], and OpenFermion-PySCF. The code for our
project is available at https://github.com/eth-n/variational-quantum-eigensolver.
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2 Related Work

In early 2014, the VQE method was proposed and shown to work on a real-world photonic
quantum coprocessor, where it was used to calculate the ground-state molecular energy for
HeH+ [1]. The main advantage of the algorithm is that it trades off the extensive coherence
time requirements of quantum phase estimation (QPE) for many preparations of an ansatz
state, each requiring and O(1) coherence time in the size of the system.

Since then, there has been extensive interest in the VQE as a hybrid quantum-classical
algorithm because it can take advantage of small and relatively noisy quantum resources
to perform intractable computation. In the latter half of 2015, some of the original authors
of the VQE paper wrote another paper to “extend the general theory of [the VQE] and
suggest algorithmic improvements for practical implementations” [4]. This has been an
indispensable resource both for understanding the VQE itself and as a source of guidance
on how to implement the algorithm as a whole. In early 2019, McArdle et al wrote a review
of quantum computational chemistry, covering a large amount of background material as
well as the QPE and VQE algorithms [5]. These are two information-dense papers among
a large body of research into advancing and improving the algorithm since it was proposed.

3 Background and Methodology

This section focuses on condensing relevant background for each of the steps of the algo-
rithm and information that motivated our implementation decisions.

3.1 Fundamental background

There are several preliminary facts and conditions that predicate the VQE, and these are
covered in greater detail in [4] and [5].

The system of interest should have a Hamiltonian that can be simulated with at most
the number of qubits available. As the size and fidelity of quantum computers increase, we
will have access to larger systems and obtain results faster and with higher accuracy.

The Hamiltonian must be decomposable into at most a polynomial number of simple
operators so that the expectation value of the Hamiltonian can be measured efficiently.
Many physical systems do meet this criteria.

The variational principle of quantum mechanics states that the average measured value
of an observable with respect to a state is at least the observable operator’s minimum
eigenvalue.

〈ψ|Ô|ψ〉
〈ψ|ψ〉

≥ λ1 (1)

With |ψ〉 normalized, the equation simplifies to

〈ψ|Ô|ψ〉 ≥ λ1 (2)
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In general, a parameterized ansatz wavefunction will be in a superposition of eigenstates
of the Hamiltonian. Therefore the expected value of measurement of the Hamiltonian on
the prepared ansatz will yield an average energy greater than or equal to the ground state
energy of the system.

〈ψ(~θ)|Ĥ|ψ(~θ)〉 ≥ E0 (3)

This is the fundamental physical principle that gives the lower bound we are optimizing
towards in the VQE.

3.2 The algorithm

The parameterized state preparation method is called an ansatz. The type of ansatz one
chooses defines the family of states that the parameters can generate, as well as the number
of experimental parameters that must be tuned. We would ideally like the ansatz to have
as much flexibility in representation as possible, while using the fewest parameters possible
an maximizing the likelihood of converging to a minimum in expected energy close to the
global optimum.

At a high level, the VQE algorithm has three steps in its core loop that are repeated
until convergence. As described in [4],

1. Prepare the ansatz state |ψ(~θ)〉 on the quantum computer where ~θ are tunable pa-
rameters.

2. Measure the expectation value of H on the prepared ansatz.

3. Update ~θ via classical optimizer to decrease the expectation value of H.

If the optimization converges to the global minimum, then the parameters ~θ will prepare
the ground state of the system of interest. The minimum expectation value of H with
respect to the choice of sufficiently powerful ansatz will be the ground state energy of the
system. Notably, the VQE can be modified to find excited states and energies of the system
of interest as well [6].

3.3 Obtain the Coulomb Hamiltonian

These are the five terms of the molecular Hamiltonian. They are expressed in SI units
followed by atomic units, which are used to reduce the number of constants floating around
in the equations and calculations.

Kinetic energy of each nucleus:

T̂n = −
∑
i

~2

2Mi
∇2

Ri
=⇒ −

∑
i

∇2
Ri

2Mi
(4)
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Kinetic energy of each electron:

T̂e = −
∑
i

~2

2me
∇2

ri
=⇒ −

∑
i

∇2
ri

2
(5)

Potential energy between electrons and nuclei:

Ûen = −
∑
i

∑
j

Zie
2

4πε0|Ri − rj|
=⇒ −

∑
i

∑
j

Zi
|Ri − rj|

(6)

Potential energy due to electron-electron repulsion:

Ûee =
1

2

∑
i

∑
j 6=i

e2

4πε0|ri − rj|
=⇒ 1

2

∑
i

∑
j 6=i

1

|ri − rj|
(7)

Potential energy due to nuclei-nuclei repulsion:

Ûnn =
1

2

∑
i

∑
j 6=i

ZiZje
2

4πε0|Ri −Rj|
=⇒ 1

2

∑
i

∑
j 6=i

ZiZj
|Ri −Rj|

(8)

The molecular Hamiltonian is the sum of these five terms:

Ĥ = T̂n + T̂e + Ûen + Ûee + Ûnn (9)

3.4 Coulomb Hamiltonian under the Born-Oppenheimer approximation

Under the Born-Oppenheimer approximation, we elect to treat the motion of the electrons
separately from that of the nuclei. This reduces the electronic Hamiltonian to the sum of
only three of the five terms in the Coulomb Hamiltonian: the kinetic energy of each electron,
the potential energy between each electrons and each nucleus, and the potential energy
arising from electron-electron repulsion. The problem then is to solve for the eigenvectors
and eigenvalues of the new Hamiltonian,

Ĥ = −
∑
i

∇2
ri

2
−
∑
i

∑
j

Zi
|Ri − rj|

+
1

2

∑
i

∑
j 6=i

1

|ri − rj|
(10)

where me is the mass of the electron, Zi is the number of protons in nucleus i, e is the
magnitude of the charge of a proton or electron, Rn is the displacement of nucleus n, and
rn is the displacement of electron n.
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3.5 Chemical basis sets

Chemical basis sets are finite sets of functions used to represent the atomic orbitals of a
molecule on a computer [7]. The basis functions are taken as linear combinations to repre-
sent molecular orbitals. The choice of basis set to use for a given molecule has important
implications for the VQE algorithm.

There is a trade-off between the number of functions in a basis set and the accuracy
of the representation of the atomic (and therefore molecular) orbitals. A minimal basis
contains exactly enough functions to represent orbitals from 1s up to the highest energy
orbitals likely relevant to the system of interest. Extended basis sets use multiple functions
per atomic orbital, which allows for more flexibility in representation of the molecule, and
in turn more accurate results.

Perhaps the most important consideration when choosing a basis set is analyzing the
requirements of your application. When representing the occupation of spatial orbitals
on a quantum computer, because each orbital can contain a spin up and/or a spin down
electron, the number of qubits required is twice the number of basis functions. This number
is called the number of spin orbitals, because it accounts for both the spin up and spin
down occupation of the spatial orbitals.

For demonstration purposes, and when constrained to a classical simulator, it is reason-
able to use a minimal basis to represent the molecules we worked with. We use a minimal
Slater type orbital, 3 Gaussian basis (STO-3G basis) in our experiments, the same basis
used in the introductory paper.

There are several open source software packages that can generate and manipulate a
plethora of basis sets and compute the relevant coefficients. Two that we encountered
during this project are PySCF and Psi4 [8].

3.6 Second quantization

Using [9] as a reference, here is a brief summary of the key points of this elegant represen-
tation of the wavefunction of a many-body system.

First, define a vacuum state |Ω〉 to represent the unique state with no particles in it.
Then define a set of annihilation operators aλ and their adjoints, the creation operators
a†λ. An annihilation operator applied to a state removes a particle from the state, and a
creation operator applied to a state adds a particle to that state.

Now we can define the general many-body or Fock space, F , the direct sum of all N
particle states for N ∈ N.

FN =
1√∏
λ nλ

a†N · · · a
†
1 |Ω〉 (11)

F =

∞⊕
N=0

FN (12)
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To respect the symmetry of the wavefunction being represented, the creation and anni-
hilation operators for bosons (fermions) obey (anti)commutation relations. When consid-
ering electronic Hamiltonians, the particles of interest are the electrons, which naturally
obey the standard fermion anticommutation relations:

[aλ, a
†
µ] = aλa

†
µ + a†λaµ = δλ,µ (13)

[a†λ, a
†
µ] = a†λa

†
µ + a†λa

†
µ = 0 (14)

[aλ, aµ] = aλaµ + aλaµ = 0 (15)

These operators can be combined to represent one- and two-body operators, but for now
we will focus on groupings that represent single and double excitations and deexcitations.

A single excitation or deexcitation operator will have one creation operator and one
annihilation operator, like so:

a†µaν (16)

Rather than thinking of this pair of operators as destroying and creating a particle,
helpful intuition is that they effectively scatter a particle from state ν to state µ.

Similarly, a double excitation or deexcitation operator will have two creation operators
and two annihilation operators, and can be thought of as scattering two particles to two
different states:

a†µa
†
µ′aνaν′ (17)

In general, to represent arbitrary operators, these single and double excitations can be
taken in linear combinations, with coefficients defining the probabilities of excitation terms
occurring. We defer to [9] for a thorough explanation of representing arbitrary operators
in second quantized form.

3.7 Second quantization of the Hamiltonian

Now we are equipped to formulate the Hamiltonian for the system of interest in terms of
creation and annihilation operations acting on a state representing the fermion occupation
of the spin orbitals. Because the three terms in the Coulomb Hamiltonian under the Born-
Oppenheimer approximation are all one- and two-body operators, the Hamiltonian can be
expressed as a linear combination of single and double excitation operators acting on an
occupation state of N fermions in the spin-orbital basis. The second quantization of the
Hamiltonian for a fermionic system takes the form

Ĥ =
∑
mn

hmna
†
man +

∑
mnpq

hmnpqa
†
ma
†
napaq (18)

with fermion creation operators a†i and annihilation operators ai and with the one- and
two-electron interaction coefficients determined by the integrals

hmn =

∫
dσ ϕ∗m(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
ϕn(σ) (19)
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hmnpq =

∫
dσ1 dσ2 ϕ

∗
m(σ1)ϕ

∗
n(σ2)

(
1

2|r1 − r2|

)
ϕp(σ1)ϕq(σ2) (20)

In equations (18), (19), and (20), the indices run over an enumeration of the basis functions.
The coefficients of the single excitations are the expectation of the one-body terms of the
Hamiltonian and the coefficients of the double excitations are the expectation of the two-
body term of the Hamiltonian, each with respect to the spatial orbitals the operators are
acting on. Note that the 2 in the denominator of the two body integral can be pulled
outside of the four-indexed sum in Ĥ.

When using PySCF, after building a molecule, one can access the one- and two-electron
integrals via the mol.intor() method. When using OpenFermion-PySCF, OpenFermion’s
MolecularData class, one way to populate the one- and two-body integrals is by running
a self-consistent field (SCF) calculation. The coefficients hmn are the sum of the elements
at the same index in the kinetic and potential energy tensors (the one-body integrals),
which are each shape (nbf, nbf), where nbf is the number of basis functions. The electron
repulsion integral (ERI) tensor contains the coefficients hmnpq (calculated by the two-body
integrals), and is represented by a four dimensional array with shape (nbf, nbf, nbf, nbf).
These coefficients are calculated for the atomic orbitals and must be changed to the molec-
ular orbital basis. This is also handled either by PySCF or internally in OpenFermion.

The same calculations can be performed in Psi4. When performing a Hartree-Fock self-
consistent field theory energy calculation, the MintsHelper (used to compute many types of
integral within Psi4) can be queried for single electron kinetic energy (ao kinetic), single
electron potential energy (ao potential), and electron repulsion integral (ERI) (ao eri)
tensors. These coefficients must be transformed from the ao (atomic orbital) basis to the
mo (molecular orbital basis, which is also possible in Psi4.

3.8 Transform the Hamiltonian to qubit space

There are two major transformations from the second quantized form of an operator to
an operator that acts on qubits. These are the Jordan-Wigner and Bravyi-Kitaev [10]
transforms. There are many modifications to these algorithms as well, but we did not
focus on profiling them.

The Jordan-Wigner transformation from the second quantized Hamiltonian to an op-
erator that acts on qubits representing the system is given by defining a transform for
creation and annihilation operators. It is a no-frills transformation and is relatively simple
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to implement and understand. It is given in [4] as

a†p =

(∏
m<p

σzm

)
σ+p (21)

a†p =

(∏
m<p

σzm

)
σ−p (22)

σ± ≡ σx ∓ iσy

2
(23)

where σx, σy, σz are the standard Pauli X, Y , and Z matrices respectively.
The Bravyi-Kitaev transform has improved asymptotic scaling in terms of the number

of gates required when compared to the Jordan-Wigner transform. It requires O(logm)
qubit operations, as opposed to Jordan-Wigner’s O(m) qubit operations, per fermionic
operation.

The Jordan-Wigner and Bravyi-Kitaev transforms, as well as several of the modifica-
tions of them, are implemented in OpenFermion. We found, surprisingly, that the Jordan-
Wigner transformation was faster to simulate (though it would require more gates on an
actual quantum device). It’s possible that’s due to the more regular tensor product struc-
ture of the Jordan-Wigner transformation being advantageous in the state-vector simulator.

Beyond simulation, the savings that can be made in qubit operations, especially when
investigating larger systems, make the Bravyi-Kitaev family of transforms preferable over
Jordan-Wigner transforms [11].

3.9 Develop an ansatz

There are several types of ansatz that have been explored in the VQE literature. The three
major families, hardware efficient ansätze, chemically inspired ansätze, and adiabatic state
preparation, are reviewed in [5]. Chemically inspired methods and adiabatic preparation
are discussed in [4].

We elected to investigate a class of chemically motivated ansätze known as unitary
coupled cluster (UCC) methods. [12] summarizes the development of UCC from classical
CC methods.

First, define a reference state that represents an initial state of the system with the
required number of electrons in it. Remember we are adding particles to a state with
respect to the spin-orbitals of a basis set which we will say has M functions.

|ψref 〉 = aN · · · a1 |Ω〉 (24)

Classical coupled cluster (CC) methods traditionally consider single and double exci-
tations from occupied to virtual spin orbitals in |ψref 〉, where parameters of the ansatz are
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coefficients of the excitations.

T =
k∑
i=1

Ti (25)

T1 =
∑

α∈virtual
i∈occupied

tαi a
†
αai (26)

T2 =
∑

α,β∈virtual
i,j∈occupied

tαβij a
†
αa
†
βaiaj (27)

where single and double excitations would limit k to 2, and thus

θ =
{
tαi , t

αβ
ij

}
i,j,α,β

(28)

|ψ(~θ)〉 = eT |ψref 〉 (29)

Unfortunately, CC approaches become non-variational when breaking bonds or when
there is significant correlation in the system and, classically, avoiding this non-variational
breakdown requires cost exponential in system size [12]. The non-variational breakdown
can be avoided by using a unitary cluster operator,

|ψ(~θ)〉 = eT−T
† |ψref 〉 (30)

Now factors determining the power and structure of the ansatz are defined by the
structure of T .

If T is developed from a single reference state considering only single and double exci-
tations, it is known as singlet UCCSD.

T =
∑

α∈virtual
i∈occupied

tαi a
†
αai +

∑
α,β∈virtual
i,j∈occupied

tαβij a
†
αa
†
βaiaj (31)

If T is instead developed with independent parameterization of every possible single
and double excitation (respecting the spin of the starting and ending spin-orbital), the
cluster operator is known as generalized UCCSD.

T =
∑
m,n

tmn a
†
man +

∑
m,n,p,q

tmnpq a
†
ma
†
napaq (32)

The third method we investigated was one similar to the k unitary pair coupled cluster
singles and doubles (k-UpCCSD) ansatz introduced by [12]. In particular, the ansatz we
implemented considers generalized singles excitations and only the singlet doubles excita-
tions that move a pair of spin up and spin down electrons from an occupied spatial orbital
to a virtual spatial orbital.
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This is the T which generates singlet pair coupled cluster:

T =
∑

α∈virtual
i∈occupied

tαi a
†
αai +

∑
α∈virtual
i∈occupied

tαi a
†
α↑a
†
α↓ai↑ai↓ (33)

The extension of this operator to k products of the operator yielded more accurate
results in [12], and is as follows,

|ψ(~θ)〉 =

(
k∏
i=1

eT
(i)−T (i)†

)
|ψref 〉 (34)

where each T (i) has an independent set of parameters

~θ =
⋃
i

~θi (35)

Another change that [12] found beneficial was generalizing the excitations in k-UpCCSD,
calling the new cluster operator k-UpCCGSD.

In general, UCC operators are composed of a sum of a polynomial number of parame-
terized excitations that can be broken up into some number of non-commuting subsets of
terms. There is a large body of research into variations on the UCC method for electronic
structure problems [5].

3.10 The quantum circuit

This step is where there are significant differences between simulating the algorithm and
running it on a real quantum device. As shown above, once the cluster operator T is
transformed to a qubit operator, the qubit operator ansatz must be exponentiated. While
this can be done numerically to be used in a matrix simulator, in order to apply the ansatz
to qubits, the operation must be Trotterized. [4] emphasizes that the Trotterization is
more of a redefinition of the ansatz rather than an approximation of it.

The bigger difference is in how we take the expectation value. In the state-vector
simulator, the expectation value can be taken exactly given the Hamiltonian matrix and
ansatz state.

On a real quantum device, the process is not so simple. For each term in the qubit
Hamiltonian, one must prepare the ansatz state from |0 · · · 0〉, apply the Pauli matrices of
the term’s excitation operators and measure. The preparation and measurement has to
be repeated until an acceptable variance is achieved, and then that term’s expectation can
weighted by its coefficient in the Hamiltonian and added to a sum over terms. An analysis
of the variance can be found in [4]. This must be repeated every time the expectation value
of energy is needed in the optimization loop.
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This is an argument for adiabatic state preparation or hardware ansätze. If the circuit
is not fixed, the overhead of recompiling and running may simply take too long (practically
speaking). In a hardware ansatz, the order of gates of the circuit are fixed, but would be
parameterized by rotation angle, for example.

3.11 Classical optimization of ansatz parameters

The selection of classical optimization method has enormous impact on the feasibility of
optimizing the ansatz parameters. It approximately determines (due to the stochasticity of
measurement) the number of function evaluations required for convergence. If the classical
optimization has difficulty converging to a value within chemical accuracy of the global
minimum, then the algorithm is essentially defeated.

Nelder-Mead (NM) was used in the introductory paper for the VQE, and rejected noise
from their photonic quantum processor well [1]. Several methods in TOMLAB (a MATLAB
library for optimization) were shown to require orders of magnitude fewer iterations to con-
verge [4]. A short review of several other experiments focused on evaluating optimization
methods is included in [5].

The Nelder-Mead method [13] is a numerical optimization method that uses heuristics
and simplices. An alternative to Nelder-Mead is the Broyden-Fletcher-Goldfarb-Shanno
method (BFGS) [14], which estimates the gradient. The L-BFGS-B method is a variant of
the BFGS method that limits the memory used by the optimizer. L-BFGS-B was shown
to be the best of several methods tested numerically in [15]. It’s also available in Scipy,
so we were able to easily integrate the method into a pipeline with the other open source
packages.

4 Results

Unless you have direct access to a real quantum device, simulation is the most reasonable
way to demonstrate VQE experiments. This is because of the overhead state preparation,
and each term, or at least each commuting subset, of the Hamiltonian has to be averaged
separately in each iteration. In the time frame of our project, we were able to construct a
software pipeline that, given a molecule specification, chemical basis set, choice of ansatz,
and optimization parameters, runs the VQE for multiple steps in bond length to produce
bond dissociation curves. In particular, we demonstrated the effectiveness of the algorithm
on a noiseless sparse-matrix simulator for the hydrogen molecule (H2), helium hydride
(HeH+), lithium hydride (LiH), and for stretching one of the OH bonds in a water molecule
(H2O) without changing the bond angle.

When we began this project, we were unsure exactly what resources we would require to
simulate the VQE for different molecules and basis sets. We had initially hoped to show the
VQE applied to Li2, but found that because the 2s and 2p orbitals are close in energy, each
lithium would contribute five spatial orbitals even in a minimal basis. That would require
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twenty qubits, and to represent the (moderately sparse) Hamiltonian requires hundreds of
GB of memory. Table 1 shows resource requirements for the STO-3G basis and projected
requirements correlation-consistent polarized valence only double zeta (cc-pVDZ) basis, a
more exact representation of the orbitals than a minimal basis.

#e− # qubits (STO-3G) # qubits (cc-pVDZ)

H2 2 4 20

HeH+ 2 4 20

LiH 4 12 38

H2O 10 14 48

Table 1: System size vs quantum resource requirements

One of the critical metrics to track is the number of parameters in the system, which
will correlate with the difficulty of the optimization. Table 2 contains the number of
parameters for the three UCC ansatz methods we tried for the minimal STO-3G basis,
and table 3 contains a projection of the number of parameters for the ansätze applied
to the cc-pVDZ basis. It becomes obvious that the fully generalized UCCSD has more
parameters (nbf2 + nbf4, where nbf is number of basis functions) than is reasonable to
expect to optimize for, even for relatively small molecules.

# params UCCGSD # params UCCSD # params per k, k-UpCCSD

H2 272 2 2

HeH+ 272 2 2

LiH 20880 44 16

H2O 38612 65 20

Table 2: Number of parameters for each ansatz in the STO-3G basis

# params UCCGSD # params UCCSD # params per k, k-UpCCSD

H2 160400 54 18

HeH+ 160400 54 18

LiH 2086580 629 68

H2O 5310720 4655 190

Table 3: Number of parameters for each ansatz in the cc-pVDZ basis

In Appendix A, we compiled pairs of graphs for each ansatz that we could apply to the
four molecules. All calculations interpreted below were carried out with a minimal STO-
3G basis set. The Hartree-Fock (HF) energy (orange curve with circle markers) and full
configuration interaction (FCI) energy (solid green curve) are calculated with PySCF. Our
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goal is to match the VQE (blue dotted-dashed curve with ’x’ markers)to the FCI energy,
or to at least be closer to the FCI than the HF energy is.

For both H2 and HeH+, it was feasible to apply UCCGSD, singlet UCCSD, and k-
UpCCSD with k = 1 and k = 3. In all four cases, the VQE matched the FCI calculation
within 5E − 11ha; essentially 0.

For LiH, the UCCGSD and UCCSD optimizations were running too slowly to obtain
results. The k-UpCCSD did converge however, and the data show that with k = 1 the
VQE is more accurate than the HF calculation, and even more so with k = 2. Neither is
within 1E−4ha, the general threshold for chemical accuracy. A longer-running simulation
with higher k would likely be increasingly accurate.

For H2O, each optimization step of k − UpCCSD takes hundreds of times more wall
time to execute because of the exponential bump in the number of elements in each matrix
that is generated each step. For context, each data point for the water molecule was
taking roughly 9000 seconds to generate. Clearly, the VQE is still outperforming the HF
calculation, but for k = 1 is again not within chemical accuracy of the FCI calculation.

5 Open problems

Many chemical basis sets are approximations that were designed for classical quantum
chemistry. There is potential for new basis sets to be developed that may do better on a
quantum computer [5].

Random parameter initialization for ansätze can lead to gradient plateaus making clas-
sical optimization difficult. Studying methods to generate better initial guesses for param-
eters is another way to decrease the number of optimization steps to convergence. [16].

There is also ongoing study and comparison and development of classical optimization
algorithms. Both stochastic gradient descent and the Nelder-Mead method empirically
tend to get stuck in local minima as system size grows, so numerical studies [5].

Reducing the number of measurements required for the VQE algorithm is also of great
importance. As system size grows, the number of measurements required grows rapidly.
Even with polynomial scaling, the number of measurements can balloon from hundreds of
millions up to millions of billions. The latter cases, even with optimistic gate speed, would
take billions of years for the algorithm to run to completion. [5].

6 Conclusion

By creating a small framework that allows for the relatively easy comparison of ansätze,
optimization methods, initial guesses for parameters, and other aspects of the VQE, we
have shown a proof of concept of a tool that could help researchers iterate on their ideas.
We hope that either future extension of the capabilities and interface of our tool, or other
projects with similar aspiration, can make future experimentation easier for researchers
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studying any of the components of the VQE. Also, by collecting information on the steps
of the VQE, we hope that this work can help others who are unfamiliar with the VQE
algorithm begin to grasp its core concepts.
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