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1 Introduction

Classical computers store and manipulate information in the form of bits, units of binary data
that are either zero or one. In constrast, quantum computation exploits quantum properties
such as entanglement and superposition by working with qubits, two-dimensional vectors
that can be some combination of both zero and one. Complex vectors created by quantum
algorithms are then measured, “collapsing” the qubit into either zero or one. The result of
this measurement may then be used classically. This allows quantum computers to work with
exponentially many classical bits worth of information simultaneously and describe more
complex relationships between information before making a measurement. Furthermore,
whereas classical logic gates define a limited amount of fundamental operations, all unitary
matrices represent valid quantum gates, allowing for infinitely many operations, even on a
single qubit.

With these tools, quantum computers can carry out algorithms and solve problems that
are classically infeasible, a property known as quantum supremacy. However, making use of
quantum supremacy necessitates the construction of highly optimized quantum computers
with ever-increasing amounts of qubits. The new tools available to quantum computers are
accompanied by new architectural demands in the construction of a quantum processor.
Scaling up current quantum processor designs is an ever-evolving challenge in quantum
computation.

2 Quantum Control

(Classical processors are built to support a fundamental set of instructions that allow pro-
grammatic control of the processor. Compilers break down code written in higher-level
languages into assembly, a low-level representation consisting of instructions that are imple-
mented on the underlying hardware. Within the processor, complex instructions correspond
to microprograms made up of simpler instructions. Basic instructions can be directly con-
verted to binary data and loaded onto various registers and functional blocks, flipping the
electronic switches that control command execution. This entire process is done digitally
through the use of wires, transistors, resistors, and other electrical components. Advances



in traditional computing technology allow the execution of these commands to occur at an
extraordinary rate, typically on the order of several billion operations per second.

However, delivering instructions to a quantum processor is a vastly more complicated pro-
cess. Modern models of quantum computation treat a quantum processor as a performance-
accelerating coprocessor, adding a quantum coprocessor to a classical CPU to grant it sig-
nificant speedups for specific problems. This quantum coprocessor is therefore subject to
classical control and must have digital input and output. However, the qubits in a quan-
tum computer are built out of quantum systems such as trapped ions, trapped electrons,
superconducting Josephson junctions, photons, quantum dots, and more.[7] The information
stored in these qubits is represented by the physical quantum state the system is in. In most
models, the quantum coprocessor is responsible for translating these digital instructions into
physical control of a quantum system, measuring the physical properties of the system, and
reporting the results of these measurements digitally [7].

In algorithm design, the low-level requirements for controlling a quantum processor are
often abstracted away by compiling algorithms to a gate-level quantum instruction set. How-
ever, in sharp contrast to classical instruction sets, most quantum instruction sets are “vir-
tual.” In particular, most are low-level intermediate representations comprised of assembly-
like code specifying gate-level operations that do not necessarily correspond to physical
implementation on underlying hardware. This abstraction masks many of the underlying
challenges of interacting with a quantum system. Because quantum states are real-world
physical properties that are not already classically digitized, each qubit requires digital-to-
analog and analog-to-digital converters (DAC and ADC, respectively) to control the under-
lying quantum system [1] and measure its state. In particular, a quantum coprocessor must
generate and apply physical signals called control pulses to change the state of a qubit and
probe the physical properties of the system. The result of this measurement of the quantum
system must be digitized and interpreted as a single bit of information. The structure and
implementation of these control pulses at the lowest level is technology-dependent, and the
amount of computational and hardware resources these systems require is high enough to
dramatically limit scalability [9].

3 Scalability Concerns

There are several factors that contribute to the hardware cost of quantum control. First of
all, DAC and ADC can have significant hardware and time cost. For many qubit designs,
control pulses are nontrivial sequences of analog output, and these sequences consume re-
sources to store, compute, or generate [2]. Furthermore, reading in physical properties from
a quantum system requires dedicated hardware to sample and sequence a digital representa-
tion of some physical signal. Interpreting this digitized measurement signal, a process known
as measurement discrimination, often requires complex computation. For example, measure-
ment discrimination in superconducting qubit architectures requires integration [1], a highly
specialized and intensive hardware task. This leads to additional resource consumption,
hampering the feedback and control process.

Quantum error correction also adds significant overhead to control costs. Since a quantum



system cannot be perfectly isolated from the environment, its state cannot be perfectly con-
trolled. Unwanted deviations from a qubit state, known as decoherence [1], can be caused by
any number of couplings with the environment. In these cases, the environment manipulates
the state of the quantum system in some unpredictable way, causing unpredictable errors.
The decoherence time of a quantum system, a representation of how long a qubit imple-
mented with the associated quantum system can store information reliably, provides a direct
limit on allotted time for a computation. Furthermore, since decoherence is probabilistic,
“reliable” storage simply has a low error rate prior to the decoherence time of the system,
often in the realm of 0.1% [1]. This stands in sharp contrast to classical computation, where
errors occur at negligible rates and largely consist of isolated bit flip errors. While mod-
ern quantum computers cannot achieve this level of reliability, establishing error correcting
schemes within a quantum processor helps to mitigate this concern.

Classically, reliable fault-tolerant computation can be easily achieved by copying bits and
saving backups to detect errors[8]. However, quantumly, the well-known No Cloning The-
orem guarantees that qubits cannot be copied for verification. This necessitates the imple-
mentation of more complicated quantum error correction schemes. Chief among them are
error correcting codes designed to encode one qubit worth of quantum information, known
as a “logical qubit,” into an entangled multi-qubit system consisting of real-world “physical
qubits.” While this entangled system multiplies the hardware cost per logical qubit, it allows
a processor to take error syndrome measurements- measurements of qubits within and adja-
cent to the entangled system that are designed to obtain diagnostic information about the
system itself, serving as indicators of various errors. By taking these measurements carefully,
the single logical qubit of information within the system may be protected from observation
while still allowing system errors to be reported and corrected. Unfortunately, this scheme
necessitates a dramatic increase in both the numbers of physical qubits in a quantum chip
and the number of control pulses that must be applied to the quantum core. Furthermore,
whereas algorithms may only require the application of a limited number of control pulses
at any given time, error correction must be continuously performed on all qubits relevant to
a given quantum program, even if they might be unmodified at that point in execution of
the algorithm [1].

Error correction also demands rapid classical control and measurement feedback from the
quantum processor [1]. Otherwise, it is impossible to determine and execute the proper error
correcting steps within the strict runtime limitations of the quantum processor. Failure
to do so will lead to the accumulation of uncorrected errors, making computation results
meaningless. Rapid feedback and control systems are also crucial for the implementation of
quantum or classical control flow statements- conditionally or repeatedly executing blocks of
code based on conditions. For example, in the later stages of the teleportation protocol, one
party takes a measurement of some quantum state and communicates the result classically
to the other party. This classical information allows the second party to perform some
operations to reconstruct the teleported state. This necessitates rapid interpretation of
measurement results and low-latency control pulse generation, lest the second party’s qubit
decohere before they are able to transform and use it.
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Figure 1: The ninja star error correcting code. This system uses eight data qubits and nine
ancilla measurement qubits to encode one logical qubit of information. Courtesy of [1].
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major hurdles preventing the
execution of more complicated
algorithms on larger quantum
computers. However, restric-
tions on instruction bandwidth
limit parallelism and increase
control latency.  Since mod-
ern quantum processors must be
kept isolated from the environ-
ment in dedicated supercooled
facilities, there are extremely limited communication channels between the traditional clas-
sical processor and the quantum coprocessor. There are power, energy, and space costs
associated with local data storage and data transmission, and reserving and delivering the
necessary resources compromises the isolation of the quantum processor. This means that
communication with the classical processor must be minimized, since parallelizing commu-
nication compromises isolation and serializing communication drives up latency [9] [10].
Low-level algorithm implementation presents another obstacle to minimizing algorithm
runtime. Many modern quantum computation systems target a virtual quantum instruc-
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Figure 2: Diagram of an isolated cryogenic quantum
processor. Different architectural components of the
computer are kept at various temperatures and in-
terconnections between layers are extremely limited.
Courtesy of [9].
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tion set like OpenQASM for algorithm implementation. These instructions sets are used to
control a theoretical quantum abstract machine, a collection of qubits upon which arbitrary
quantum circuits may be run without error and subject to classical control. This toolchain
implicitly assumes that a quantum processor will support any arbitrary gate necessary for
the computation. However, gates represent theoretical manipulations of a quantum system
that are highly non-trivial to perform. Underlying hardware generally supports only a few
key quantum gates, forming a universal gate set. Classically, all possible boolean functions
may be implemented using a universal gate set with relatively low complexity, but quan-
tumly, universal gate sets are only capable of approximating any desired unitary matrix to
an arbitrary degree of precision. This approximation makes no promises as to its complexity,
potentially requiring untenable sequences of operations. Decomposing a desired unitary into
some acceptable combination of supported gates presents a computational challenge, and
since the available universal gate set is dependent on the underlying quantum system tech-
nology, the decomposition is technology-dependent as well. Since the difficulty of execution
of a particular quantum gate may vary based on implementation, the underlying hardware
must be considered when generating both gate-level representations and control pulses [6].
Determining the appropriate level of vertical integration necessary in the quantum compila-
tion and execution process is a major challenge in modern quantum computation. Quantum
architectures aim to divide up the tasks involved in controlling a quantum coprocessor and its
underlying quantum systems and assign them to various hardware and software components
in a highly optimized and scalable manner.

4 Proposed Architectural Solutions

Fu et al. [1] have identified a need for further specifying the layout of a quantum computer- in
particular, describing the connections between gate-level algorithm implementation and the
physical layer. Many current systems assume a superconducting qubit design and implement
non-scalable control logic with low-speed feedback, further suggesting that all compilation
of programs below the gate level must be technology dependent and highly customized. In
contrast, Fu et al. wish to attain a greater degree of technological independence by spec-
ifying the structure of a microarchitecture responsible for control logic and managing the
instruction data path. This microarchitecture consists of multiple hardware sections de-
signed to translate gate-level instructions into precisely-timed and parallelized sequences of
control pulses using a microcode and codeword approach. This approach is analogous to
classical complex instructions- in this case, all quantum instructions are treated as com-
plex instructions that must be broken down into processor-defined microprograms. Once a
quantum instruction is delivered to the quantum processing unit, it undergoes symbol as-
signment and control flow in a Quantum Execution Controller, translation into a sequence of
microoperations with a given timing in a Physical Microcode Unit, and parallelization and
enqueueing of microoperations for translation into codewords and pulse sequences at a fixed
latency in the Analog-Digital Interface. While synthesizing control pulses for a wide array of
quantum operations can have significant hardware cost and latency, the microcode approach
breaks down a quantum operation into a sequence of simpler operations. Correspondingly,



this allows storing simpler control pulses and combining them in precise sequences to form
more complex operations, dramatically reducing the cost of this process. This final step
is carried out in a technology-dependent quantum classical interface. Whereas this system
would typically require time, storage resources, and communication bandwidth, the above
optimizations and organization schemes allow major reductions in cost [1].

Fu et al. [1] further specify the presence
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In a follow-up experiment, Fu et al. [2] fully design QuMA, a control microarchitecture
based on the above criteria. They implement a simplified version of QuMA, focusing on the
conversion of codewords to control pulses with proper timing and leave error correction and
high-level instruction translation to future work. They implement their microarchitecture
on several Field-Programmable Gate Arrays (FPGAs), utilizing several arbitrary waveform
generators to control a superconducting quantum core. They then experimentally validate
QuMA by using it to conduct a standard gate characterization test known as AIIXY. In
this experiment, single-qubit gates requiring the application of precisely-timed sequences of
control pulses are applied to qubits and then tested for accuracy. Their results demonstrate
that QuMA is a viable system with many technology-independent components [2].

Figure 3: Quantum architecture stack as de-
scribed by Fu et al., courtesy of [1].
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Figure 4: Experimental implementation of QuMA. The Quantum Control Unit is responsible
for delivering quantum instructions to the correct clients, the physical microcode unit delivers
seqeunced microinstructions to the quantum-classical interface with precise timing, and the
microoperation unit translates these into codewords used to look up and trigger simplififed
pulse generation. Note the exclusion of the QEC section. Courtesy of [1].

Hornibrook et al. [10] have developed the “Prime-line / Address-line” architecture to
generate control pulses at a higher level, separate quantum control instructions from pulse
generation, and minimize communication between supercooled and room temperature facil-
ities. This architecture identifies several “Prime waveforms” that serve as control pulses for
hardware-supported fundamental gates. These waveforms are bussed together on “Prime-
lines.” The “Address-line” conveys classical instructions to switching matrices, dedicated
hardware systems in close proximity to the qubits they control. These matrices select a
prime waveform from the bus to convert to physical pulses for qubit control. This system
minimizes the energy required to generate and transmit control pulses within the quantum
processor and allows classical instructions to trigger quantum gates instead of being con-
verted to control pulses. These local switching matrices may also be tuned to customize the
control pulses delivered to particular qubits, further optimizing performance. Hornibrook et
al. experimentally verified this architecture by building a switching matrix into a cryogeni-
cally compatible FPGA and using it to control semiconductor quantum dot qubits. While
individual switching matrices and prime waveforms are technology-dependent, the underly-
ing principles hold regardless of platform. Many different quantum systems have compatible
switching matrix designs, allowing “Prime-line / Address-line” architectures to be generally
applicable [10].
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Figure 5: Prime-line multiplexing architecture. The prime waveforms are bussed together
and locally multiplexed for qubit control. The switch matrices are controlled by the Address-
line bus. Courtesy of [10].

Tannu et al. [9] have identified instruction bandwidth as a major scalability concern
and demonstrated that 99.999% of instructions are used for error correction. To that end,
they have proposed an alternative hardware-managed system for error correction known
as QuEST, or Quantum Error-Correction Substrate. Similarly to QuMA, this system is
designed to parallelize corrections on a given qubit and decouple error correction instructions
from ordinary algorithmic instructions, enabling continuous error correction on all qubits
in use without compromising the execution of standard instructions. However, QuEST
employs Micro-coded Control Engines, or MCEs, to locally execute both QEC codes and
logical instructions. Each MCE serves a region of the quantum processor and is controlled
by a master. Tannu et al. have focused their efforts on using these MCEs to optimize the
instruction and data pipelines in this system, minimizing latency and instruction bandwidth.
Because QEC instructions are run continuously and don’t require global synchronization,
they may be recorded and delivered by the MCEs without intervention from the master.
MCEs may cache logical instructions for algorithm execution, further reducing the instruction
bandwidth. Through experimental simulation techniques, Tannu et al. have demonstrated
that QUEST can reduce instruction bandwidth by up to eight orders of magnitude [9].
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Figure 6: Example architecture of a Micro-coded control engine. Digital instructions are
converted locally into microcode. The microcode memory remembers QEC instruction se-
quences and some logical instructions. Codewords from this unit are used to trigger the
switching matrices of a primeline multiplexing architecture. Courtesy of [9].

Shi et al. [6] describe a mismatch between gate-level and hardware-level descriptions of
quantum circuitry as a major scalability concern. When quantum programs are compiled to
the gate level, they make simplifications and assumptions of a fundamental gate set that may
not match underlying hardware. For example, underlying hardware may readily support a
CNOT, SWAP, cZ, or other controlled gate, while a compiler may decompose a program
into SWAP gates. In extreme examples, a compiler may represent a less common gate as a
combination of more “fundamental” gates, but if the underlying hardware had direct support
for the original gate, then it would need to further decompose each fundamental gate when
an optimal circuit would have been trivial. This suboptimal control dramatically increases
the complexity of circuitry unnecessarily. To counter this, Shi et al. propose novel compiler
methods that can take advantage of quantum optimal control [6].

Quantum optimal control is an algorithmic approach that maximizes the efficiency of con-
trol pulses applied to a quantum system. For a desired qubit evolution, a sequence of control
pulses are applied to the system, and recursive analysis allows the adjustment of each pulse
to maximize the efficiency of the system transformation [6]. However, this is an incredi-
bly computationally expensive procedure and is impractical for large-scale circuits. Shi et
al. have extended the applications of this technique by aggregating gate-level instructions
into blocks that commute and can be managed in parallel before applying optimal control
processing to the aggregates. While other approaches covered previously are designed to
separate high-level software processing from control pulse specification, this approach uses a
much greater level of vertical integration. While it is much more computationally demanding
on a compiler, this approach can achieve speedups of 5x to 10x. This allows the execution
of algorithms that are too complex to run quickly and therefore reliable enough on modern
quantum computers. While this heavily fine-tuned approach is likely not scalable into larger
qubit regimes, it does highlight that significant optimizations may be made by providing



higher-level compilers with a greater degree of hardware information [6].
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Figure 7: Example circuit broken up into aggregated sections. Within each section, the gates
commute and control pulses for the section may be applied simultaneously. These aggregates
may be assigned a single complex pulse. Courtesy of [6].

In summary, while most quantum programs abstract away low-level hardware control,
the scalability difficulties of modern quantum computers is partially caused by challenges
at this level. There have been many proposed quantum architectural changes designed to
improve scalability. Fu et al. have proposed a cohesive microarchitecture designed to shift the
burden of error correction to hardware, decouple error correction instructions from logical
instructions, and reduce the hardware and time cost of the sequencing and execution of
control pulses. Similarly, Tannu et al. have proposed a reprogrammable microarchitecture
that separates logical and error correction instructions at the hardware level while massively
reducing the demand on instruction bandwidth. Rather than focus on defining architectural
sections for instruction translation and control pulse generation, Shi et al. have extended
quantum optimal control for use with modern quantum computers by compiling gates into
highly optimal aggregates that are directly converted into control pulses.

Each of these proposed solutions propose some division of labor and dedicated hardware
and software systems to design scalable quantum architectures. Reaching a consensus about
where these divisions should be and the appropriate level of vertical integration will be of
utmost importance to enable standardized implementation and further optimization during
the era of Noisy Intermediate-Scale Quantum Computing.
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