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1 Introduction

Cryptography, like various other fields in computer science, is bound to
change drastically once quantum computers are introduced. Several math-
ematical problems that are considered ”hard” in a classical scheme can be
solved in polynomial time in a quantum setting. Any cryptographic algo-
rithm that uses these primitives should be reevaluated in the quantum set-
ting. This includes but is not limited to digital signatures. Digital signature
cryptosystems are protocols designed to verify authenticity of messages and
ensure that they are not altered during transfer. The introduction of quan-
tum computers forces security assumptions of digital signatures to change,
for which an analysis of alternate methods that utilize the same notion of
computing is required. Quantum resistant signatures will be an essential
part of secure computing, which means that a comprehensive analysis of
current algorithms on the matter is crucial and almost a necessity. This pa-
per aims to explore the range of cryptographic techniques that can securely
”sign” messages in the context of quantum computers. As an analysis of the
means of non-repudiation and authentication, our goal is to understand why
traditional signatures are insecure under a non-classical model and discover
algorithms that can be used as digital signatures which can resist attacks
from a quantum computer.
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2 Background

2.1 Classical Signatures Under Quantum Model

Pre-quantum signature algorithms focus primarily on prime factorizations
and discrete logarithms and their extensions to elliptic curves. These prob-
lems do not have known polynomial algorithms to solve, hence they are used
extensively in cryptosystems. The most efficient algorithms cannot go faster
than exponential time, which makes these problems suitable bases for digital
signatures as by the time the systems are broken, the information carried
would be invalid. However, this is not the case in quantum setting as the
both prime factorization and discrete logarithm can be solved in polynomial
time, which renders the algorithms based on these problems insecure.

Integer(Prime) Factorization The integer(prime) factorization can be
described as follows: Given integer n, find n = pq where p and q are both
prime integers. The application of the problem as a digital signature was
first used by Rivest et al. [15] as part of their RSA cryptosystem. A simple
representation of the scheme can be described as follows:

• Key generation: Find two large prime numbers p and q, and calculate
n = pq. The operations are now done in Zn and n is public. Next,
calculate λ(n) where λ is the totient function and λ(n) = (p−1)(q−1)
since both p and q are primes. λ(n) is kept secret. For each user
in the system, find a random public (verification) key vk such that
gcd(vk, λ(n) = 1 which guarantees vk will have an inverse modλ(n).
Then calculate the private (signing) key sk such thatsk ∼= vk−1 mod
λ(n). Each user will then have their own (vk, sk) pair and vks are
public.

• Signing : When user A wants to sign a message m ∈ Zn, A calculates
a digest H(m) using a public random oracle H : {0, 1}∗ → Zn. A then
calculates the signature S ∼= H(m)skA mod n.

• Verification: If another user B wants to verify that the signature S in-
deed corresponds to the message m, user gets A’s public verification key
vkA and checks the following: H(m) ∼= SvkA mod n. If the congruence
holds true then the message is verified.
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For an adversary to recover skA, λ(n) must be known so that it is possible
to calculate skA ∼= vk−1A mod λ(n). Since λ(n) is private, the only way to
calculate λ(n) is to find the prime factors of n so that (p− 1)(q− 1) = λ(n).
Finding p and q does not have a known sub-exponential algorithm in classical
setting, which makes the scheme secure. However, when moved to quantum,
we can see the security does not hold anymore; as given n, p and q can be
recovered using Shor’s algorithm [16] in polynomial time, which reduces the
problem into an order finding problem and solves it with a quantum circuit.

Discrete Logarithm The discrete logarithm problem on the other hand is
defined as follows: Given n, its primitive root g and a value a, gcd(a,m) = 1
find x such that gx ∼= a mod m. Replacing a with 1, the problem is also
known as the order finding problem. Application of discrete log into the
digital signatures is commonly associated with Elgamal’s [7] scheme: which
can be simplified as the following:

• Key Generation: Find a prime p and a generator g for Zp. The param-
eters (p, g) are public to the system. For each user, randomly choose
the signing key sk from [1, p − 1). Then calculate the verification key
vk = gsk mod p.

• Signing : When user A wants to sign a message m ∈ Zp, A calculates
a digest H(m) using a public random oracle H : {0, 1}∗ → Zn. A then
calculates the signature by first randomly choosing a k ∈ [2, p − 1)
where gcd(k, p − 1) = 1 then calculate r and s where r ∼= gk mod p
and s ∼= (H(m)− skAr)k−1 mod p− 1. The pair (r, s) is the signature
corresponding to m.

• Verification: If another user B wants to verify that the signature (r, s)
indeed corresponds to the message m, user gets A’s public verification
key vkA checks the following: gH(m) ∼= vkrAr

s mod p. If the congruence
holds true then the message is verified.

For an adversary to recover skA, k must be known so that it is possible to cal-
culate skA ∼= sk−H(m) mod (p−1). Since k is private, only way to calculate
is through r, which requires access to an efficient way of calculating discrete
logarithm. Since there is no sub exponential way with classical comput-
ers, the signature is considered secure. However, expanding to the quantum
setting the same security won’t hold as calculating k can be considered an
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instance of order finding, which can be solved by Shor’s algorithm’s [16]’s
quantum part.

2.2 Random Oracle in Quantum Setting

One additional property of signatures in classical setting independent from
the underlying problem is the use of a random oracle H : {0, 1}∗ → Zn to
use a digest of the message during signing process. The oracle H is chosen in
a way that given a and H(a), it is hard to find b 6= a such that H(a) = H(b).
This is also known as the weak collision resistance and is the reason why H is
used as part of signature schemes as for given pair of message and signature
(m,S), it is hard to find m′ such that H(m) = H(m′) which would result in
the same signature S. While the best methods for finding such m′ depend
on birthday paradox in classical setting, this can easily be solved in quantum
setting using Grover’s search algorithm [10] which makes message forgery
possible.

3 Secure Signatures in Quantum Setting

Secure signatures in quantum setting can be examined under two main
categories: quantum and post-quantum signatures. While both of these
paradigms assume the existence of a quantum adversary, the schemes them-
selves are based on different structures and hence different assumptions and
security proofs.

3.1 Post-Quantum Signatures

Popular of the two, post-quantum signatures are based on structures that can
be implemented in classical setting and assumed to withstand the presence
of a quantum adversary. Their security proofs are often based on resistance
against known quantum algorithms, hence they are often classified as “quan-
tum resistant”. The capability of implementing these schemes in classical
computers concentrates the majority of the effort in signatures on this field
where National Institute of Standard and Technology (NIST) leads the on-
going research in standardization. [5]
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3.1.1 Lamport-Diffie One-Time Signature System

The Lamport-Diffie one-time signature scheme [4] makes use of a hash func-
tion H, and its security depends on H being hard to invert. The scheme goes
as follows:

Let H be a hash function that generates b output bits.

• Key Generation: The signer independently picks at random 2b b-bit
strings x1[0], x1[1], . . . , xb[0], xb[1]. These strings make up the secret
key. The public key y1[0], y1[1], . . . , yb[0], yb[1] also consists of 2b b-
bit strings, and it is computed by hashing the strings of the secret
key: y1[0] = H(x1[0]), y1[1] = H(x1[1]), . . . , yb[0] = H(xb[0]), yb[1] =
H(xb[1]).

• Signing : The signer generates uniformly at random a b-bit string r, and
computes H(r,m), resulting in b output bits h1, . . . , hb. The signature
is (r, x1[h1], . . . , xb[hb]).

• Verification: The verifier has the messagem and the signature (r, z1, . . . , zb)
and computesH(r,m), resulting in b output bits h1, . . . , hb. The verifier
then checks whether y1[h1] = H(z1), . . . , yb[hb] = H(zb). The message
is accepted only when each of the equalities holds.

If an attacker A wants to deceive the verifier, A must be able to efficiently
invert H, and this is infeasible even with quantum algorithms.

Note that the signature scheme described above only allows one message
to be signed. In addition, this scheme requires each individual character to
have its own signature, which is an inefficient method of signing. There are
ways, however, of extending the scheme to allow multiple signed messages.

3.1.2 Proof-based Signatures

Quantum signatures can take many different forms, but one of the most
common signature types is the non-interactive, zero-knowledge proof. A
cryptosystem based on a proof system involves two entities, a Prover and
Verifier. The Prover uses a message to generate some proof, then sends it
to the verifier, who checks the proof and receives a verdict. This allows the
sender to sign and encrypt a message, and the receiver to decrypt and ensure
authenticity.
The proof can be considered non-interactive if the prover and verifier do not
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send messages to each other. A proof is zero-knowledge if the prover can show
the verifier their knowledge of the message without giving specific informa-
tion. Thus, a non-interactive, zero-knowledge proof can be viewed as Alice
sending an encrypted public message which Bob can then decrypt and en-
sure that it came from Alice without knowing Alice’s unique signature. One
example of a zero-knowledge, non-interactive proof is a Σ-protocol, which is
a public-coin verifier that sends 3 messages.
The Fiat-Shamir signature scheme [12,13] is one of the most widely studied
of these types of post-quantum cryptosystems based on proof systems. Fiat-
Shamir is a transform of a Σ-protocol using a random oracle.

Definition 1 (Security Parameter Relationship) For every statistical
security parameter λ, there is a set of relationships

Rλ = {(x,w) : x ∈ Lλ, w ∈ W (x)} (1)

where Lλ is a language in NP, and W (x) is a set of witnesses for proving
statement x. In other words, there is a polynomial time and poly(λ) algorithm
that decides if (x,w) ∈ Rλ.

Definition 2 (Σ-Protocol)
A Σ protocol for Rλ consists of a prover P and a verifier V, both polynomial
time algorithms.

• P is given (x,w), and outputs (a, st), where a is a commitment sent
by a state st.

• V is given (x, a) generates a challenge c ∼ {0, 1}λ uniformly at random.

• P, given (x,w, st, c), generates a response r.

• V is given r, and using (x, a, c), determines if the proof (a, c, r) is
valid.

Definition 3 (Fiat Shamir Transformation) The Fiat Shamir transform
replaces the verifier’s challenge with a hash function c ∈ H(a). Therefore,
the prover algorithm P can generate this interaction themselves,
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As a result, we can turn a Fiat Shamir transform on any Σ-protocol into a
non-interactive proof in the quantum random oracle model (QROM). By re-
programming the random oracle, we can turn a quantum prover that attacks
the Fiat Shamir transform into a quantum prover that attacks the underly-
ing Σ-protocol. To accomplish this, suppose we have a dishonest prover A,
producing a proof π = (a, z) for a statement x. We can obtain an interactive
dishonest prover for the Σ-protocol that extracts a from A and sends it to
verifier V . The verifier then sends back challenge c, which prover A can then
use to reprogram the random oracle. We can make it so that the output z of
A will be a correct reply to c with a probability not much smaller than the
probability that A samples the proof π in the QROM.
We see that using a quantum computer, a Σ-protocol is not secure in the
QROM model. This is because we can simulate the distribution of all
c ∼ {0, 1}λ using a superposition of all states. But, we see that the Fiat
Shamir transform can be described as quantum resistant because it is hard
to simulate all outputs of a particular hash function H(a). Thus, the Fiat
Shamir transforms a proof-based communication scheme into a post-quantum
resistant cryptosystem.

3.1.3 Lattice-Based Signature Systems

As part of the post-quantum cryptography, lattice-based digital signatures
include algorithms based on mathematical structures called lattices. A lat-
tice Λ with the dimension m and rank k can be described as an additive
subgroup of Rm whose basis consists of k linearly independent vectors. Aj-
tai [1] first showed that a cryptosystem based on a lattice problem has the
complexity of the underlying cryptosystem, which made lattices as a viable
alternative to standard public-key algorithms. With additional problems de-
fined [2], signature schemes based on lattice problems are widely seen as the
successor of the traditional digital signature schemes as there are no known
quantum algorithms that can solve hard lattice problems in polynomial time
and the problems can equivalently transformed into other problems defined
on matrices and rings, which also allows easiness of implementation in tra-
ditional computers. This implementation easiness can also seen in NIST
Standardization Effort, as a significant portion of the round 2 candidates are
based on lattices. [5]. Important examples include but are not limited to
CRYSTALS-Dilithium [6], Falcon [8] and qTESLA [3].
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3.2 Quantum Signatures

As name suggests, quantum signatures consist of schemes that are defined on
actual quantum circuits. This limits the variety of algorithms compared to
post-quantum ones, however from an information theory perspective, quan-
tum signatures are often impossible to forge or repudiate hence called ”quan-
tum secure”. However, due to the setting, these schemes also come with
several issues which would have been trivial problems in classical setting.

3.2.1 Gottesman - Chuang Signatures

Proposed in [9], Gottesman- Chuang signatures are considered one of the
widely known quantum signatures although the scheme itself is a naive one
time signature. Gottesman-Chuang signature can be seen as the extension of
Lamport-Diffie signatures into the quantum setting, where instead of hashes,
a construct called quantum one-way functions are used which also means the
signature is created bit by bit. Use of one-way functions is a common occur-
rence in any type of digital signatures; however quantum one way functions
differ from its traditional counterparts since what constitutes non-feasible
operation in classical one way functions does not carry over to quantum set-
ting. These functions are limited in terms of utility and the extent of one-way
properties are different compared to classical setting. However, Gottesman-
Chuang signature also contains 3 different types of verification result, which
is something unusual for a classical signature (where the possible verification
results are either accept or reject).

Quantum One-Way Functions For a function f , the one-way property
can be described as for element x in the domain of f , it is easy to calcu-
late f(x) = y but computationally hard to invert the function and calculate
f−1(y). One-way functions are extensively used in digital signatures in classi-
cal setting which makes the use of an extended definition of one-way functions
for an algorithm that is the extension of classical algorithm logical. However,
due to the setting, the quantum one-way function we will be discussing is
limited in terms of capability and bound by number of recipients in order to
preserve non-inversibility.
In essence, quantum one-way functions in this context are defined as fol-
lows: Giving a classical bit string k, generate a quantum state |fk〉 such that
k 7→ |fk〉. This function manipulates two different properties of quantum
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systems, which helps it to act as a one-way function. Unlike in classical one,
bits in quantum setting can be in superposition of 0 and 1, which means any
n-qubit state has exponential number of coefficients. For all k bit strings of
length L i.e. k ∈ {0, 1}L and n-qubit states |fk〉, this property allows L >> n
since 〈fk| |f ′k〉 ≤ δ (almost orthogonal) for k 6= k′. Conversely, this helps the
function not to be targeted by search algorithms.
While it is easy to calculate and verify k 7→ |fk〉, to preserve the irreversibil-
ity outside knowing k, additional restrictions must be met. Unlike a classical
one-way function, it’s possible to reverse a mapping in quantum setting, given
enough copies of the same state |fk〉. To prevent such case, the number of
recipients and lengths of both classical strings and resulting quantum states
must be bounded, for which the second property of quantum states is manip-
ulated. According to Holevo’s theorem [11,14], for a given n-qubit state the
most number of classical bits of information that can be deduced from the
state is n-bits. Given T copies of n-qubit |fk〉, the most number of bits that
can be deduced about k will become Tn. If L− Tn >> 1, the probability of
guessing k will remain small, preserving the one-way property.
However, the auxillary requirements to calculate and verify the quantum one-
way function are not as trivial as its classic counterparts. An equality test
for classical strings k and k′ is required, which is complicated considering the
states |fk〉 and |f ′k〉 should be preserved after this check. This can be done
using the SWAP-test where starting with |+〉 as the ancilla qubit, states
|fk〉 and |f ′k〉 are put through a controlled Fredkin gate (where ancilla qubit
is acting as the control) followed by a Hadamard gate and measurement on
the ancilla qubit. If the measurement is |0〉 then the test is passed and k = k′

since this would only happen if |fk〉 = |f ′k〉. However, there is still a chance
of failing if |fk〉 6= |f ′k〉 as |fk〉 and |f ′k〉 are not completely orthogonal.
Another task to be accomplished is given an arbitrary state |ψ〉 how can you
verify that it is indeed the output of the function i.e. given k how to check if
|fk〉 = |ψ〉. Assuming a black-box mapping for the quantum one-way func-
tion, this is done through inverting mapping. Since k is known, it is possible
to treat the mapping as |k〉 |0⊗n〉 7→ |k〉 |fk〉. Hence to check |ψ〉, the state
can be put into the reverse mapping and verified if |0⊗n〉 is measured.

Algorithm The signature scheme based on the quantum one-way function
then differs from a classical counterpart by three different aspects. Unlike a
traditional signature scheme, Gottesman-Chuang signatures have three veri-
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fication results: 1-ACC, 0-ACC, and REJ. 1-ACC and 0-ACC both refer
to the case with authentic signature, the difference being former indicates
that the result can be transferrable to another party whereas the latter lacks
this property. REJ on the other hand refers to the case where the signature
is not authentic and cannot be verified. Second aspect is the fact that the
signature security requires only to be true in high probability. Finally, as
part of the quantum setting, verification keys for the signatures are quantum
states rather than bit strings.
As part of the setup, all parties in communication agrees upon number of key
pairs M , and security thresholds c1 and c2.It is also assumed that everyone
in the party knows how to implement the mapping k 7→ |fk〉. Based on these
assumptions the signature scheme is as follows:

• Key Generation: Alice generates classical L-bit string pairs {ki0, ki1} for
1 ≤ i ≤M . Next, Alice calculates the states {f ik0 , f

i
k1
} for each i again

using the quantum one-way function. The initial classical bit-strings
are Alice’s signing keys whereas the quantum states are the verification
key.

• Signing: To sign the bit b, Alice prepares (b, k1b , k
2
b , ...k

M
b ) and sends it

to every party in the communication. The tuple is the signature.

• Verification: To verify Alice’s signature, each receiving party checks
the mapping kib 7→ |f ikb〉 and records the number of incorrect mappings
j. Based on j the verification result is determined:

– j ≤ c1M −→ 1-ACC

– j ≥ c2M −→ REJ

– c1M < j < c2M −→ 0-ACC

Like Lamport-Diffie signatures, this scheme is for one time only, meaning
after each bit signing every key, used or not used, must be discarded.

Security Security argument for the signature algorithm considers two dif-
ferent types of attacks: Forgery and repudiation. Forgery considers the case
where an outsider tries to recover Alice’s classical bit strings and create non-
authentic signatures. Repudiation on the other hand considers the case where
Alice tries to make recipients disagree on the validity of the same signature.
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Security against forgery is straightforward based on the properties of quan-
tum one-way functions. Assuming that the malicious party has access to all
T copies of the same signature, by Holevo’s theorem the most number of
classical bits that it can reveal about each kib is Tn. This means for each key,
there are L− Tn bits that have to be guessed by the malicious party. Con-
sidering there are M keys, the correct number of guesses is 2−(L−Tn)(2M),
meaning with high probability it will fail. Furthermore, if it tries to change
the key based on failed attempt, each recipient would see a majority of the
public keys fail.
Before addressing the repudiation security, the problem of key distribution
must be handled. Key distribution itself is a significant problem in classical
setting as repudiation is possible if two different recipients have access to
two different keys. This combined with the lack of a broadcast channel in
quantum setting makes the key distribution a non-trivial problem. Like its
classical counterpart, one way to handle this issue is for Alice to submit sets
of public keys to a trusted third party where the trusted third party applies
swap tests to verify the validity of keys sent to recipients. If the test fails
Alice’s repudiation attempts are uncovered. However, Alice can still cheat
by submitting a symmetric state which would not be affected by this test. In
this scenario, Alice cannot determine which of the recipients gets a valid key.
Since M is large, it is with low probability that j < c1M in one recipient and
j > c2M in another one making it resistant against a repudiation attempt.
Having a trusted third party may not be an option for most of the time which
means for a better proof a distributed verification method, where each recip-
ient receives multiple set of keys to verify both their copies and their peers
is required. To simplify the security argument, the disagreement between
only 2 recipients can be considered. For recipients Bob and Charlie, and
their incorrect mappings jB and jC repudiation case translates to achieving
|jB − jC | > (c2 − c1)M . To show with high probability, this cannot be the
case, authors in [9] consider a global state |ψ〉 representing what Alice could
have submitted for public keys as superposition of two different terms: Terms
that pass the swap test but leaves recipients in agreement and terms that fail
the swap test. Representing the global state as a combination of the both
kept and tested keys of both recipients follows to show that the global state
passing the swap test has a low probability which results Alice’s chances of
repudiating being unlikely.
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4 Open Problems and Conclusion

There are several open problems that we could identify in both post-quantum
and quantum signatures:

• Security of Post-Quantum Signatures: Are the quantum resistant dig-
ital signature algorithms actually secure in quantum setting? Or does
the resistance of the algorithms come from the fact that there are no
known ways yet? Security proofs of post-quantum signatures often use
the latter, which makes the actual security questionable.

• Security Parameters in Post-Quantum Signatures: Are the security
parameters in signature algorithms as ”tight” as possible? If yes, how
do they affect the practicality and applicability of the signature algo-
rithms?

• Practicality of Quantum Signatures: Compared to their post-quantum
counterparts, quantum signatures are rare and limited in current ca-
pability, which raises the question ”Is it actually practical to prefer
quantum signatures for their security?”. The Gottesman-Chuang sig-
nature cycle is valid for one bit only and requirement of discarding each
available key poses a question in terms of practicality.

Digital signatures, being one of the key concepts in cryptography, are bound
to change with the proper introduction of quantum computers. The security
of prevalant classical signatures does not carry over to quantum setting due
to possibility of forgery utilizing quantum algorithms. As a solution, both
quantum and post-quantum signatures propose different alternatives utiliz-
ing both classical and quantum primitives. However, both have their own
advantages and setbacks with specific problems, preventing a full transition
to quantum-secure digital signatures completely for the time being.
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