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1 Introduction

For this project, we present a survey of the current research on using quantum algorithms in the implemen-
tation of a Support Vector Machine (SVM). An SVM is a supervised learning model that classifies data into
one of the two given categories. In particular, an SVM provides a decision boundary with margin to each
category of data as large as possible. Implementing SVMs using quantum algorithms can result in significant
speedup over the classical implementations, potentially bringing the originally polynomial complexity down
to logarithmic scale. To understand how this is the case, we conduct preliminary review of related literature
and provide an in-depth discussion of how exactly these quantum SVMs work in the following sections.

The formulation of SVM was first proposed by C. Cortes and V. Vapnik in [1]. It was shown that
the optimal decision hyper-plane is the linear combination of a subset of data vectors, and hence comes
the name ”Support Vector Machine”. Learning non-linear SVM can be reduced to solving convex quadratic
optimization problem, which in the worst case takes time cubic to the number of data [2]. Previous studies [5,
2, 3] improve the learning algorithm to take time only quadratic to the number of data. They achieved so by
exploiting special structure of SVMs formulation to solve the quadratic problem more efficiently. Another
line of effort was dedicated to the linear SVM [6] which was popular in text data mining [7]. Time complexity
of learning linear SVM is only linear to the number of data at the cost of less expressive power.

Comparing to classical sampling algorithms which require polynomial time complexity, quantum SVM has
the complexity logarithmic in the size of the vectors and the number of training examples. Rebentrost et al.
showed how support vector machines can be implemented on a quantum computer [8]. Before that paper,
Lloyd et al. developed a fast quantum evaluation of inner products, which is useful in preparing the kernel
matrix of SVMs [9]. Anguita et al. showed how to train SVM effectively using Quantum Computing [10].
They analyzed the behavioral of conventional and enhanced SVMs, and compared their theoretic results with
experiments. Harrow, Hassidim and Lloyd showed how to use quantum algorithms to estimate solutions to
linear systems of equations [11]. This algorithm is essential in training SVMs. Zhaokai Li et al. constructed
a scheme to build quantum SVMs experimentally [12].

The rest of this survey is organized as follows: We review SVM in classical setting in Section 2. We then
present the setup of quantum SVM in Section 3, and discuss its time complexity advantage in Section 4.

2 Classical Support Vector Machine

In this section, we give an in-depth review of the classical SVM. We start by discussing the origin of SVM
families, hard-margin SVM, in Section 2.1. Then in Section 2.2, we describe improvement of hard-margin
SVM based on non-linear transformation using the Lagrange dual, and discuss how kernel trick can be
employed for further efficiency improvement. Next, we discuss soft-margin SVM, which improves upon hard-
margin SVM to handle data that is not linear-separable, in Section 2.3. We then review least-square SVM
in Section 2.4. Least-square SVM is another variant of SVM family whose computational efficiency can
greatly benefit from quantum computing. Finally, we briefly summarize and compared the time complexity
of different SVM variants in Section 2.5.
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Figure 1: Illustration of hard-margin SVM

2.1 Hard-margin SVM

The input of classical SVM is a dataset {(xi, yi)}Mi=1 with M instances, where each x ∈ RN and y ∈ {+1,−1}.
Given the input dataset, a hard-margin SVM [1] aims to find a hyperp-plane (w, b) such that w>x + b
classifies each instance correctly. In addition, distance between (w, b) to the closest x, or the margin,
must be maximized. Fig. 1 illustrates the idea of hard-margin SVM in two-dimensional. In particular, the
decision hyperplance is coloered in red, and the margin, which is cloroed in yellow, is determined by the
closest distance between each group of data to the hyperplane. The above can be formulated as

arg min
w

1

2
w>w

s.t. yi(w
>
i xi + bi) ≥ 1, ∀i = 1, . . . ,M

which is a standard quadratic programming (QP) problem.

2.2 Non-linear SVM and Kernel Trick

The first draw back of the formulation of hard-margin SVM is that classifier is linear, and practical appli-
cations often involve data exhibiting non-linear separation. One way to tackle such problem is to introduce

φ(·) : RN × RÑ which applies non-linear transformation to input feature xi as zi = φ(xi) by mapping it to

a higher-dimensional space of RÑ . Nevertheless, usage of φ(x) introduces O(M̃) variables in the QP formu-
lation of hard-margin SVM. To avoid such dependency, one can introduce Lagrange multipliers {αi}Mi=1 and
rewrite the formulation as its dual form as

arg min
α

1

2

M∑
i=1

M∑
j=1

αiαjyiyjz
>
i zj +

M∑
i=1

αi

s.t. αi ≥ 0, ∀i = 1, . . . ,M

M∑
i=1

yiαi = 0

The new QP problem now only has M variables and M + 1 constraints. One can recover w by w =∑M
i=1 αiyizi and recover b as b = ym −w>zm by choosing any m where αm > 0.
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One may observe that, while the QP problem itself is free from O(Ñ) dependency, one still needs to
compute z>i zj a priori. Fortunately, we can speed up the process of feature transformation plus inner

product by replacing it with a kernel function k(·, ·), where k(x,x′) = φ(x)
>
φ(x′). With carefully designed

kernel, one can compute φ(x)
>
φ(x′) with time complexity O(N) instead of O(Ñ) for a wide range of φ.

Incorporating kernel k into the (hard-margin) SVM is straight-forward by rewriting the above dual form as

arg min
α

1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(x>i xj) +

M∑
i=1

αi

s.t. αi ≥ 0, ∀i = 1, . . . ,M

M∑
i=1

yiαi = 0

If kernel k satisfies Mercer’s condition, the above optimization is a convex QP. Noticeably, in the kernel for-
mulation, only b but not w can be obtained explicitly using complementary slackness. To perform prediction
on a new x, one need to instead calculate

∑
m:αm 6=0 αmymk(xn,x) + b.

2.3 Soft-margin SVM

Another drawback of hard-margin SVM is that to have feasible solutions, the data must be linear-separable
(after applying φ). This clearly hinders the practical applications of hard-margin SVM. Therefore, soft-
margin SVM, which is the commonly-seen form of SVM nowadays, was proposed. Unlike hard-margin SVM,
soft-margin SVM allows the data to be classified incorrectly, and instead tries to balance between the margin
and the distance from (w, b) to those wrongly-classified instances. The above intuition can be formulated as

arg min
w

1

2
w>w + C

M∑
i=1

ξi

s.t. yi(w
>
i xi + bi) ≥ 1− ξi, ∀i = 1, . . . ,M

ξi ≥ 0, ∀i = 1, . . . ,M

where ξi here represents the ’violation’ if xi is at the wrong side of the margin (i.e. yi(w
>
i xi + bi) < 1) and

C controls the trade-off between larger margin and smaller violation. The dual formulation of soft-margin
SVM can be derived similarly as hard-margin SVM by

arg min
α

1

2

M∑
i=1

M∑
j=1

αiαjyiyjk(xixj) +

M∑
i=1

αi

s.t. αi ≥ 0, ∀i = 1, . . . ,M

αi ≤ C, ∀i = 1, . . . ,M

M∑
i=1

yiαi = 0

The above QP is of N variables and 2N + 1 constraints.

2.4 Least-square SVM

Least-square SVM (LS-SVM) is another variant of soft-margin SVM which employs square penalty to the
violation of instance to the margin. Such alternative results in the following new formulation:

arg min
w

1

2
w>w + γ

M∑
m=1

ξ2
m

s.t. ym(w>φ(xm) + b) = 1− ξm, ∀m = 1, . . . ,M
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Applying the Lagrange dual, the optimal solution for LS-SVM is given by[
0 1>

1 K + γ−1I

] [
b
α

]
=

[
0
y

]
where K(i, j) = φ(xi)

>φ(xj) and w is resembled by
∑M
m=1 αmφ(xm). When kernel trick is employed, we

have K(i, j) = k(xi,xj) and the prediction is made by
∑M
m=1 αmK(xm,x) + b.

The key difference between LS-SVM and other variants introduced above lies between the complexity of
the induced optimization problem. In particular, we are only required to solve a linear system in LS-SVM,
while we need to solve a convex QP for other variants of SVM. On the other hand, solving linear system
in quantum computing is known to be efficient [11], which hints that the training efficiency of LS-SVM can
greatly benefit from quantum computing, as we will discuss further in Section 3 and Section 4.

2.5 Time Complexity

Hard-margin SVM and soft-margin SVM which employs linear penalty on the violation requires us to solve
a convex QP with inequality constraints. Optimization algorithms for general convex QP with inequality
constraints involve an iterative procedure that requires inversion of the kernel matrix, whose time complexity
is O(N3). Dedicated SVM training algorithms [2] exploits special structure of the induced QP to avoid
matrix multiplication. Time complexity of such algorithms depend on the number of support vectors, and
empirically scale between O(N) to O(N2).

On the other hand, to obtain optimal solution for LS-SVM, we are required to solve a linear system. A
direct matrix inversion has time complexity O(N3). It is also possible to rewrite the linear system to have
positive-definite constraint matrix, where iterative methods like conjugate gradient can be applied [22]. The
time complexity of iterative methods generally depend on the condition number of the constraint matrix,
but the efficiency is better than matrix inversion in most practical applications.

3 Quantum Support Vector Machines

3.1 Setup

The input of a quantum support vector machine are M known quantum states

|~xj 〉 =
1

|~xj |

N∑
k=1

(~xj)k |k〉 , (1)

their norms |~xj |, and their labels yj ∈ {−1, 1} for each j ∈ {1, · · · ,M}.
We will assume that we have access to an oracle that generates these input states. However, we will

briefly discuss one method of storing and generating these states using quantum RAM (qRAM). The use of
qRAM allows us to access stored data in parallel.

For ~v ∈ CN with components vi = |vi | eiϕi , assume we have {|vi | , ϕi}Ni=1 stored in qRAM. Then we can

construct state |v〉 = 1
|v|~v in O(logN) steps as long as we are able to estimate sub-norms n` =

∑`
i=1 |vi |

2

efficiently [9]. With this setup, if we have M training examples, we can reconstruct their quantum states in
time O(logMN).

3.2 Training the Model

The training of a SVM is to construct the kernel matrix K, and maximizing over the Karush-Kuhn-Tucker
multipliers ~α = (α1, · · · , αM )T the function:

L(~α) =

M∑
j=1

yjαj −
1

2

M∑
j,k=1

αjKjkαk, (2)
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subject to the constrains
∑M
j=1 αj = 0 and yjαj ≥ 0. To prepare the normalized kernel function K̂ =

K/Tr[K], We first prepare the state |χ〉 = 1/
√
Nχ
∑M
i=1 |~xi| |i〉 | ~xi〉, where Nχ =

∑M
i=1 |~xi|2. To prepare K̂,

we discard the training set register, or equivalently take the partial trace

Tr2{|χ〉 〈χ|} =
1

Nχ

M∑
i,j=1

〈~xj |~xi〉|~xi||~xj | |i〉 〈j | =
K

Tr[K]
= K̂. (3)

Once we prepared the kernel matrix K, we can employ the least-square reformulation of the support
vector machine and obtain the parameters ~α from the solution of a linear equation system. Following the
procedures in [14], we get a least-squares approximation of the problem:

F

(
b
~α

)
≡
(

0 ~1T

~1 K + γ−1
1

)(
b
~α

)
=

(
0
~y

)
(4)

where user-specified γ determines the relative weight of training error and SVM objective. For the
training of a quantum SVM, our goal is to produce a quantum state |b, ~α〉. In order to do so, we need to
solve the normalized F̂ |b, ~α〉 = |~y〉, where F̂ = F/Tr[F ]. To find the inverse of F̂ , we need to separate F̂ as

F̂ = (J +K + γ−1
1)/Tr[F ], with J =

(
0 ~1T

~1 0

)
. The generator of F̂ can then be decomposed as

e−iF̂∆t = e−i∆t1/Tr[F ]e−iJ∆t/Tr[F ]e−iK∆t/Tr[F ] +O(∆t2). (5)

The exponentiation of the matrix γ−1
1 is trivial. The two eigenvalues of the matrix J are λ± = ±

√
M

and the corresponding eigenstates are |λ±〉 = 1√
2
(|0〉 ± 1√

M

∑M
k=1 |k〉). We can use these information to

calculate e−iJ∆t/Tr[F ]. For K̂, we apply the algorithm in [15]:

e−iK̂∆tρeiK̂∆t = e−iLK̂∆t(ρ)

≈ ρ− i∆t[K̂, ρ] +O(∆t2)
(6)

We can use this to get the inverse of K̂. For the vector |~y〉, we can expand it into eigenstates |uj 〉 of F̂

with corresponding eigenvalues λj , |ỹ〉 =
∑M+1
j=1 〈uj |ỹ〉 |uj 〉. Then we follow the steps in [11], performing a

controlled rotation and uncomputing the eigenvalue register. Thefinal stste we have is
∑M+1
j=1

〈uj |ỹ
λj
|uj 〉. In

the basis of training set labels, the expansion coefficients of this state are the desired SVM parameters:

|b, ~α〉 =
1√
C

(
b |0〉+

M∑
k=1

αk |k〉

)
(7)

where C = b2 +
∑M
k=1 αk |k〉.

3.3 Classification Using the Model

After finishing training the SVM, we can now classify a query state |~x〉. Using the parameters we got in
equation 7, we can construct the state

|ũ〉 =
1√
Nũ

(
b |0〉 |0〉+

M∑
k=1

αk|~xk| |k〉 |~xk〉

)
, (8)

with Nũ = b2 +
∑M
k=1 α

2
k|~xk|2. Next, we construct the query state:

|x̃〉 =
1√
Nx̃

(
|0〉 |0〉+

M∑
k=1

|~x| |k〉 |~x〉

)
(9)

5



with Nx̃ = M |~x|2 + 1. For the classification, we perform a swap test. We construct the state |ψ〉 =
1√
2
(|0〉 |ũ〉 + |1〉 |x̃〉) and measure it in the state |φ〉 = 1√

2
(|0〉 − |1〉). The measuement has the success

probability P = |〈ψ|φ〉|2 = 1
2 (1− 〈ũ|x̃〉). The inner product is given by

〈ũ|x̃〉 =
1√
Nx̃Nũ

(b+

M∑
k=1

αk|~xk||~x|〈~xk|~x〉).

If P < 1
2 we classify |~x〉 as +1, otherwise -1.

3.4 Kernel Matrix Approximation and Error Analysis

We now show that quantum matrix inversion essentially performs a kernel matrix principal component
analysis and give an error analysis of the quantum algorithm. The matrix under consideration, F̂ = F/ trF ,
contains the kernel matrix K̂ = K/ trK and an additional row and column due to the offset parameter b.
In case the offset is negligible, the problem reduces to matrix inversion of the kernel matrix K̂γ only. For

any finite γ, K̂γ is positive definite, and thus inevitable. The positive eigenvalues of F̂ are dominated by the

eigenvalues of K̂γ . In addition, F̂ has one additional negative eigenvalue which is involved in determining

the offset parameter b. The maximum absolute eigenvalue of F̂ is no greater than 1 and the minimum
absolute eigenvalue is ≤ O(1/M). The minimum eigenvalue arises e.g. from the possibility of having a
training example that has very little (almost zero) overlap with the other training examples. Because of
the normalization the eigenvalue will be O(1/M) and as a result the condition number κ (largest eigenvalue
divided by smallest eigenvalue) is O(M) in this case. To resolve such an eigenvalue would require exponential
runtime. We define a constant εK such that only the eigenvalues in the interval εK ≤ |λj | ≤ 1 are taken into
account, essentially defining an effective condition number κeff = 1/εK . Then, the filtering procedure is
employed in the phase estimation using this κeff . An ancilla register is attached to the quantum state and
appropriately defined filtering functions discard eigenvalues below εK when multiplying the inverse 1/λj for
each eigenstate. The desired outcome is obtained by post-selecting the ancilla register.

The legitimacy of this eigenvalue filtering can be rationalized by a principal component analysis (PCA)
argument. Define the N ×M (standardized) data matrix X = (~x1, · · · ~xM ). The M ×M kernel matrix

is given by K = XTX. The N × N covariance matrix is given by Σ = XXT =
∑M
m=1 ~xm~x

T
m. Often

data sets are effectively described by a few unknown factors (principal components), which admit a low-
rank approximation for Σ. This amounts to finding the eigenvectors ~vi of Σ with the largest eigenvalues
λi. The matrices XXT and XTX have the same non-zero eigenvalues. Keeping the large eigenvalues and
corresponding eigenvectors of the kernel matrix thus retains the principal components of the covariance
matrix, i.e. the most important features of the data. Our quantum speed-up holds in the case when the data
is in a low-rank situation, i.e. the kernel matrix has a few O(1) eigenvalues and many O(1/M) eigenvalues,
all of them initially unknown. The quantum algorithm only takes into account the O(1) eigenvalues, which
incurres an error E. This error is given by the norm of the difference between the low-rank matrix K and its
quantum approximation Kq, i.e. E = ||K −Kq||F , using the Frobenius/Hilbert-Schmidt norm. This error

is given by E =
√∑

λi=O(1/M) λ
2
i , where λi are the eigenvalues of K. Since by assumption we have O(M)

small eigenvalues, this error is E = O(1/
√
M).

Regarding the cutoff εK , O(1) eigenvalues of K/ trK exist for example in the case of well-separated
clusters with O(M) vectors in them. A simple artificial example is K = 12×2

⊗
(~1~1T )M/2×M/2. Note that

finding the principal components of the kernel matrix is performed in quantum parallel by phase estimation
and the filtering procedure.

4 Time Complexity of Quantum SVMs

In this section we will compare the time complexity of classical SVMs to quantum SVMs. Because the
quantum SVM we discuss is a least-squares model, we will compare it to a least-squares classical SVM. We
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first discuss the time complexity of training the model and after we discuss the time complexity of classifying
an unseen example using the model.

4.1 Training the Model

We first begin with a discussion of the algorithms to train or prepare the SVM model. The two central
steps to the least-squares SVM algorithms outlined above are computing the kernel matrix and solving the
least-squares problem. The quantum algorithm yields improvements over the classical algorithm in both of
these parts, which explains its logarithmic running time.

In classical SVM, each entry of the kernel matrix takes time O(N) to compute. This is the time that it
takes to calculate the dot product between two N -dimensional vectors. There are also O(M2) entries in the
kernel matrix since we need an entry for each pair of training vectors. Hence, finding the kernel matrix takes
time O(M2N).

Also in classical SVM, solving the least-squares problem takes O(M3) time, which is the time it takes to
solve the QP problem. Therefore, the total time for the classical SVM algorithm is O

(
M2(N +M)

)
.

Now we review these two steps for the quantum SVM algorithm. Our first major improvement is in
calculating the kernel matrix K̂ = K/tr(K) where Kij = 〈~xi|~xj〉.

Using the algorithm in [9], we can approximate the inner product between two N -dimensional (log2N -

qubit) states in time O(ε−1 logN) with accuracy ε. This is done by estimating |xi |2 + |xj |2 and |xi − xj |2

and then computing xTi xj = 1
2

(
|xi |2 + |xj |2 − |xi − xj |2

)
. However, to compute the entire kernel matrix,

we still need to evaluate
(
M
2

)
= O(M2) inner products, which would yield K in time O(M2 logN) using

quantum inner product.
We can more efficiently prepare the entire kernel matrix at once by using a method we reviewed in the

section above. To prepare K̂ we call the training data oracles on the state 1√
M

∑M
i=1 |i〉, which is how we

obtain the state |χ〉 with partial trace K̂. Because using quantum RAM allows for O(logMN) access time,
we have that the preparation of K̂ takes time O(logMN).

Finally, once we have K̂, we only need to compute tr(K) in order to recover K. We can approximate the
trace of the kernel matrix efficiently using the method in [8] by generating the Hamiltonian using the norms
of the training data stored in the quantum RAM.

Now we review how to solve the least-squares problem quickly using quantum operations. Instead of
solving the QP as in the classical algorithm, we evaluate the inverse of F in Equation 4 to find a solution.
Using the Lie Product, we find that we can estimate the inverse of F by simulating e−iγ

−1
1∆te−iJ∆te−iK∆t.

J and γ−1
1 are sparse, so we can easily simulate them using the method in [16]. K, however, is not sparse,

so we must use a separate technique, called quantum self-analysis to simulate eiK̂∆t in time O(logMN) [17].
Quantum self-analysis involves creating multiple copies of the density matrix K̂ to aid in the simulation.
Using these methods together, we obtain a total time of O(logMN) to solve the least-squares problem.

A careful analysis of these techniques and the errors they accrue in [8] reveals that we can approximate
a solution in time O(ε−3ε−3

K logMN) time, where we can choose ε and εK lower to make the approximation
more accurate. We choose ε to control the number of iterations in the algorithm. We choose εK so that during
the inversion of K̂, only eigenvalues with εK ≤ |λi | ≤ 1 are considered. This creates an effective condition
number of 1

εK
so that the inversion can be computed efficiently. Hence, we have that the classical algorithm

takes time O
(
M2(M +N)

)
to prepare the model, while the quantum algorithm takes time O(logMN). We

should keep in mind though that this is limited only to least-squares SVM, which is not so commonly used.
Also, the quantum algorithm is an approximation algorithm with approximation factors suppressed in the
running time, while the classical algorithm is not.

4.2 Classification Using the Model

We now compare the running time of prediction using our SVM models in the classical case and quantum
case.
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Prediction using the classical model takes O(M) times because once we have a solution, we can produce
a prediction by direct calculation using the M values for α.

In the quantum model, classification with accuracy ε requires iterating O(P (1 − P )/ε2) times, where
P = 1

2 (1− 〈ũ |x̃〉) [8].
These two running times are quite different. In general, classification in the quantum SVM is faster when

M is large, but classical SVM may be preferable if accuracy is important.

5 Limitations and Open Problems

In this section, we discuss some of the limitations of the quantum SVM model proposed when compared to
classical SVM models and then we discuss some open problems about quantum SVMs that are currently
being studied.

5.1 Limitations

Even though the running time of the least-squares running time is much better for the quantum version than
the classical version, there are many limitations to the quantum SVM model we have outlined. Because of
these limitations, the quantum model is not always an obvious better choice.

As discussed before, this quantum algorithm only works for least-squares SVM, but this is a less commonly
used version of SVM because it can lead to more overfitting. It is more common to use linear penalty of
violation rather than squared penalty in the classical SVM.

In addition, the method of calculating the kernel matrix outlined above only works for polynomial kernels.
This method will not work for RBF kernels for example, which are very commonly used in classical SVM.
Furthermore, the kernel matrix inversion algorithm discussed above requires that K is Hermitian, so the
kernels must also be symmetrix for quantum SVM.

Another important point to note is that the running time O
(
M2(M +N)

)
for classical least-squares SVM

is only a worst-case running time that is only realized if every entry of the kernel matrix must be calculated
and the QP problem is sufficiently hard. This running time is reasonable for dense training vectors, but if the
training vectors are sparse, calculating the kernel matrix and solving the least-squares problem can be much
faster since most operations do not need to be done. There are many classification problems that employ
sparse training vectors in which using the quantum SVM might not actually give a benefit over classical
SVM.

Because of these restrictions, using quantum SVM might only be beneficial in classification problems
where the training vectors are dense and polynomial kernals are useful.

5.2 Open Problems

There are many open problems in quantum SVM to be left to explore. This paper only discusses a least-
squares SVM model, but there exist many other SVM models that we have no good quantum algorithms
for yet. The variety of classical SVM models and kernels makes solving a classification problem much easier
in the classical case, so any further development in a different type of SVM quantum algorithm would be
noteworthy.

Right now there is some development on a sparse quantum SVM that uses hinge loss and L1 regularization
instead of L2 regularization sparse. The model is considered sparse because its classification will only depend
on a few features. This model is very different from the least-squares SVM discussed here and can perform
well on different types of problems than the least-squares SVM performs well on.

One other interesting open problem is dequantization. Dequantization is the process of trying to ”de-
quantize” a quantum algorithm by using its techniques to create a more efficient classical algorithm. The
idea is that since the techniques used in quantum SVM are very different than those used in classical SVM,
maybe there are some classical analogues to these techniques that could be synthesized to create a better
classical algorithm. One paper proposes a quantum-inspired classical SVM algorithm that samples from the
kernel matrix to make classifications based on estimations [19].
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