
Qutanum Information Processing Final Report

Sharmila Duppala, Mackenzie Kong-Sivert, Juan Luque

Fall 2019

1 Introduction

Quantum information and computing has an interesting notion of proofs in
complexity theory. In this project, we limit ourselves to QMA, a quantum
analogue of the NP class with bounded error polynomial time verifier rather
than a deterministic one. The notion of proof and an efficient verification is
extended to the quantum setting along with a growing list of complete problems
and different variants of the QMA (which might or might not be equal to the
class QMA). As a preliminary study, we have studied an introduction to the
QMA covering the quantum proofs, definitions of efficient quantum verification,
the formalization of the class QMA illustrated using the group non-membership
problem in quantum setting. Few QMA complete problems like (a, b)-QCS
(Quantum Circuit Satisfiability) and the first QMA-complete problem, the local
Hamiltonian problem are discussed. We would like to look further into the
proof of the QMA completeness for local hamiltonian problem by [VW15] which
is intuitively the quantum analogue of the Cook-Levin theorem. The error
reduction procedures in classical verification can be handled by running the
polynomial time verification procedure multiple times which doesn’t exceed a
polynomial time and the error bound improves up to required threshold value.
However understanding the error reduction procedures seems like the core for
the QMA. In subsequent readings we include understanding of the procedures
like parallel error reduction and witness preserving error reduction.

The main topic we like to delve into is one of the variants of the QMA
called Unentangled quantum proofs (QMA(2)) where a proof splits into two
unentangled parts with respect to some bi-partition of the input (proof) k-
qubits. Its not known if these two classes are equal or not. We would like
to read the first paper on this [KMY01] which introduces quantum “multiple-
Merlin”-Arthur proof systems in which Arthur uses multiple quantum proofs
unentangled with each other for his verification. This paper also discusses the
necessary and sufficient conditions to reduce a QMA(t) (t ≥ 3) to QMA(2).
This paper also says that having multiple provers doesn’t increase the power
of the QMAs in the case of soundness (in classical setting this class is called
co-NP). The paper [HM13] solves some basic questions in this class which is
QMA(t)= QMA(2) for (t ≥ 3). Understanding more about this class by reading
the above state of art papers is our short term goal.
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With this project, we aim to read about the past research that has been
done into quantum Merlin-Arthur structures, learn about the current state of
research, and make some developments of our own. We have been guided to-
wards some resources that may be useful to us in achieving this aim, and we
have found some additional resources through our own efforts. Our first task,
therefore, will be to sort through these sources and the information and insights
they have to offer.

Upon closer inspection to these sources we will be better prepared to narrow
down on specific outcome goals for the research project. For now topics we are
interested in pursuing include: QMA(2), separability problem (testing whether
a given quantum state is separable).

2 Preliminaries

The following are some preliminaries that are needed to understand quantum
complexity. The notion of complexity is well defined in classical context and can
be extended to quantum in the setting of prover and verifer. Usually, while doing
complexity theory, we look at the decision problems where the output is binary,
yes or no. This is because it makes analysis easier and without loss of generality,
any optimization problem can also be restated as a decision problem. Using this,
we can define a general function that can be used in the analysis f : {0, 1}n →
{0, 1} where {0, 1}n is the set of all binary strings of length n. This can also be
formulated in terms of formal languages where we can define a language, L for
function f , where the input strings x ∈ L iff f(x) = 1 i.e, L = {x : f(x) = 1}.
Some examples of these languages can be PRIMES = {x: x encodes a prime
number} or FACTORING = {(x, y) : x has a factor between 2 and y}. PRIMES
is a natural decision problem, whereas FACTORING should be returning prime
factor. But this works as we can use binary search to find y in time proportional
to logarithmic of input size. We define some important classical complexity
classes and understand the relationship between them. Then we proceed by
observing how these classes behave when extended into a quantum setting.

2.1 Complexity Classes

Definition 2.1 (BPP). A language L belongs to BPP if the problem x ∈ L is
decidable in poly(n) time by a randomized algorithm.

Henceforth, a randomized algorithm means a standard Turing machine that
has access to a ‘coin flipper’, which can output 0 or 1 each with probability 1

2 .
We do not know whether there is a true random number generator in classical

context. Hence we cannot say if P=BPP. But we can say P ⊆ BPP. Decision,
for this class, is usually taken to mean that Pr[output = 1 | x ∈ L] ≥ 3

4 and
Pr[output = 0 | x /∈ L] ≤ 1

4 . We see that the fractions 3/4 and 1/4 are
arbitrary and can be amplified using the error amplification trick below.
We can see that P ⊆ BPP is trivially true as any randomized algorithm can
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run a deterministic algorithm by simply not flipping the coin or ignoring the
coin flips.

Definition 2.2 (MA). A language L is in MA if there exists a polynomial time
randomized verifier V such that

• (Completeness) ∀x ∈ L, ∃z such that Pr[V (x, z) = 1] ≥ 2/3

• (Soundness) ∀x 6∈ L, we have that ∀z, Pr[V (x, z) = 1] ≤ 1/3.

with x ∈ {0, 1}n and proof z ∈ {0, 1}poly(n).

As MA is an extension of NP we have NP ⊆ MA. Further, it is easy to
observe that BPP ⊆ MA since Arthur can simply ignore Merlin and solve the
problem himself.

Now we make the transition to classes allowing the usage of Quantum Cir-
cuits.

Definition 2.3 (BQP). A language L belongs to the complexity class BQP if the
decision problem has a quantum circuit Q that can be constructed in polynomial
time satisfying

• (Completeness) ∀x ∈ L, Pr[Q(x) = 1] ≥ 2/3

• (Soundness) ∀x 6∈ L, Pr[Q(x) = 1] ≤ 1/3.

It is also easy to see that BPP ⊆ BQP (Bounded error, Quantum, Polyno-
mial) since a quantum circuit can efficiently simulate a randomized algorithm.
The relation between BQP and QMA is elaborated on in the next section.

Definition 2.4 (EXP). A language L is in the complexity class EXP if it is
decidable by a deterministic algorithm in time O(2poly(n)).

This next class is just an extension of EXP where we relax the deterministic
requirement of the solver. Equivalently it can be defined in terms of having a
deterministic verifier running in time poly(n).

Definition 2.5 (NEXP). A language L is in the complexity class NEXP if, and
only if, there exists a deterministic verifier V that runs in time 2poly(n) and it
satisfies

• (Completeness) If x ∈ L, ∃y of length 2poly(n) such that V (x, y) = 1

• (Soundness) If x 6∈ L, ∀y of length 2poly(n) such that V (x, y) = 0.

NEXP is a trivial upper bound for QMA(2) (defined below) and also the
best known upper bound of it.
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3 QMA and the amplification problem

Instead of using Turing machines as a standardized model to define a verifier
machine, we use

Definition 3.1 (QMA(c,s)). A language L belongs to QMA(c,s)if there exists
a BQP verifier V . That is,

• (Completeness) ∀x ∈ L, there exists a quantum state |ψ〉 such that
Pr[V (x, |ψ〉) = 1] ≥ c

• (Soundness) ∀x 6∈ L, for all quantum states |ψ〉, Pr[V (x, |ψ〉) = 1] < s

where each proof |ψ〉 is poly(x) qubits long.

One of the classes that we are interested in QMA (Quantum Merlin Arthur),
an analogue of NP and MA. This class characterized the languages that can be
solved using a quantum randomized circuit in polynomial time using a poly-
nomial size proof. Similar to the famous results in the classical counterparts
from the side of error amplification, we have results on error amplification in
the quantum context as well. It is known that QMA is robust with respect to
error bounds [KSVV02] which is stated formally in the theorem below.

Theorem 3.1. Let a, b : N → [0, 1] and q ∈ poly(n) satisfy,

a(n)− b(n) ≥ 1

q(n)

for all n ∈ N then QMA(a,b) ⊆ QMA(1− 2−r, 2−r) for every r ∈ poly(n).

(The proof of theorems will be revisted for rigorous understanding in the next
iteration of study). Marriott et.al, in [MW05] proves that for a single proof
QMA, that completeness and soundness errors can be reduced exponentially
without increasing the size of Merlin’s proof. This reduction technique is also
called witness preserving error reduction. This is formally stated as the theorem
below.

Theorem 3.2. Strong error reduction Let a, b : N → [0, 1] and q ∈ poly(n)
satisfy,

a(n)− b(n) ≥ 1

q(n)

for all n ∈ N then QMAm(a, b) ⊆ QMAm(1−2−r, 2−r) for every r,m ∈ poly(n).

Two applications of Theorem 3.2 are also stated in [MW05]. The first is a
simplified proof that QMA is contained in the class PP i.e, QMA ⊆ PP and
QMAlog = BQP . The proofs of this are also involved and will be rigorously
understood in the next iteration of the study.
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3.1 QMA Completeness

The first problem that is proved to be QMA is complete is the k-local Hamil-
tonian problem which is the quantum analogue of the MAX-k-SAT which is an
NP-complete problem for k ≥ 2 and is QMA-complete for k ≥ 3. On the other
hand, the 1-local Hamiltonian problem is in P. And the 2-local Hamiltonian
problem is QMA-Complete [KKR04].

Definition 3.2. An operator H : B
⊗n
→ B

⊗n
, where B = {0, 1} on n qubits

is a k-local Hamiltonian if H is expressible as H =
∑r

j=1Hj where each term
is a Hermitian operator acting on at most k qubits.

Now, we define the local Hamiltonian problem as follows

Definition 3.3. Given H1, H2, H3, . . . ,Hr local Hamiltonians on n-qubits with
H =

∑r
j=1Hj with r ∈ poly(n). Each of the Hj has the norm bounded by a

polynomial in the total number of qubits, i.e, ‖Hj‖ = O(poly(n)) and its entries
are specified by poly(n) size. In addition, there are two parameters c, s where
c < s. For Yes instances, the smallest eigenvalue of H is at most c and for a
No instance, the smallest eigenvalue of H should be at least s.

We see that local Hamiltonian problem is a natural extension of the SAT
problem, where each clause of the SAT instance, corresponds to one of the local
Hamiltonians. All the false assignments to the clause should be penalized, hence
the corresponding states of the local Hamiltonian will have positive eigenvalues.
The constraints on the clause are being directly applied on the local Hamilto-
nians which gives the connection for the reduction between the two problems.
We observe that a trivial upper bound of QMA is the class EXP. As the Hamil-
tonian on n-qubit system interactions can be represented using a 2nx2n matrix
whose smallest eigenvalue can be found in time polynomial in the input’s size
by the spectral decomposition. Hence we have QMA ⊆ EXP. However, having
a poly(n) number of local Hamiltonians reduces our input size to poly(n) intro-
ducing only poly(n) constraints which is analogous to the Satisfiability problem.

4 QMA(2) and the power of Unentangled provers

A natural question to ask is, what happens in the case of multiple provers. In
case of a classical complexity, multiple proofs are of no significance. However,
the case of separable proofs is interesting as we see that QMA(2) ⊆ QMA [] The
class QMA(2) is first introduced by Kobayashi in [KMY01] with unentangled
provers. Intuitively, multiple provers can help Arthur to make less mistakes.
This is analogous to how the police often investigates multiple criminals to
uncover the truth. There are some important properties of multiple prover class
in quantum setting without any interaction. We discuss them after defining the
class.

Definition 4.1 (QMA(2)). A language L belongs to QMA(c,s)if there exists a
BQP verifier V . That is,
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• (Completeness) ∀x ∈ L, there exist quantum states |ψ1〉 , |ψ2〉 such that
Pr[V (|x〉 ⊗ |ψ1〉 ⊗ |ψ2〉) = 1] ≥ c

• (Soundness) ∀x 6∈ L, for all quantum states |ψ1〉 , |ψ2〉, we have
Pr[V (|x〉 ⊗ |ψ1〉 ⊗ |ψ2〉) = 1] < s

where each of the proofs |ψ1〉 , |ψ2〉 is poly(x) qubits long.

4.1 Power of unentanglement

It is conjectured that multiple provers QMA with non entangled promise is more
powerful than QMA. Trivial bounds are QMA ⊆ QMA(2) ⊆ NEXP as Arthur
can ignore one of the proofs and use only one proof to verify and give the output
hence QMA ⊆ QMA(2). QMA(2) ⊆ NEXP comes from guessing exponential-
size classical descriptions of the two quantum proofs, which is a trivial upper
bound and known best bound. However, an interesting upper bound for it would
be QMA(2) =? EXP . Also we can ask if QMA =? QMA(2). In fact, there is
a problem(pure state N-representibility problem) given by Liu et al, in [LCV07]
that is in QMA(2) but not in QMA which makes it plausible that the class
QMA(2) is strictly larger than QMA.

4.2 Results in QMA(2)

It is known that QMA(k)=QMA(2) which says that k provers can be reduced to
2 provers [HM12]. Other non trivial results include proving that 3SAT can be
solved by QMA(2) using O(log n) size proofs from Merlin and O(

√
n) witnesses.

This means that the size of input is o(n), which would classically mean proving
that Exponential time Hypothesis given by Impagliazzo and Paturi in [IP01],
to be false.

4.3 Classes of bipartite measurement operators

There’s an interesting line of work attempting to understand QMA(2) with
restricted verification protocols [HM12]. We say a POVM(M,I-M) has following
classes of measurement operators describes operators on Cd ⊗ Cd

1. BELL : Systems are measured locally with no conditioning (independent
measurements). M =

∑
(i,j)∈S αi ⊗ βj where

∑
i αi = I and

∑
j βj = I

and S is set of pairs of outcomes. The verifier accepts the if we get a state
that belong to S after independent local measurements.

2. LOCC1 : It is the set of M that can be realised by measuring the first
system and then choosing a measurement on the second system conditional
on the outcome of the first measurement. Such M can be written as

M =
∑
i

αi ⊗Mi

where where
∑

i αi = I and 0 ≤Mi ≤ 1 for each i
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3. LOCC: It is the set of M that can be realised by alternating partial mea-
surements on the two systems a finite number of times, choosing each mea-
surement conditioned on the previous outcomes. An inductive definition
is that M is in LOCC if there exist operators {Ei}, {Mi} with

∑
iEi ≤ I

and each Mi ∈ LOCC such that either, M =
∑

i(I ⊗
√
Ei)Mi(I ⊗

√
Ei)

or M =
∑

i(
√
Ei ⊗ I)Mi(

√
Ei ⊗ I). For the base case, it suffices to take

I ∈ LOCC.

4. SEP: It is the set of M such that

M =
∑
i

αi ⊗ βi

for some positive semidefinite (WLOG rank one) matrices {αi}, {βi}.

5. ALL: This class has no restrictions on M other than 0 ≤M ≤ 1

Currently, we are at the step of understanding these classes and how each
of these restrictions can be used to understand the complexity of QMA(2)
by seeing which of them influences the complexity of the class.

4.4 Results under the bipartite measurement operators

BellQMA protocols are a subclass of multi-prover quantum Merlin-Arthur pro-
tocols in which the verifier is restricted to perform nonadaptive, unentangled
measurements on the quantum states received from each Merlin. Drucker and
Chen in [CD10] gives BellQMA proofs of satisfiability problem with m clauses
with constant gap in soundness, in which O(

√
m) merlins send proofs of length

o(logm) qubits to Arthur. The below theorem explains the result formally.

Theorem 4.1. [ABD+08] proved that 3 − SAT with m clauses can be solved
using

√
mpoly logm Merlins, where each Merlin sends a proof of size O(logm)

qubits with perfect completeness and constant gap in the soundness. There is
a BellQMA proof system which, given a 3-SAT instance with m clauses uses
O(
√
m) Merlins, each of which sends O(logm) qubits. The proof system has

completeness 1− exp{Ω(
√
m)} and soundness 1− Ω(1).

It is a conjecture proposed by Aaronson et.al, in [ABD+08] which strengthens
the fact that 3SAT can have almost the same completeness and a constant
soundness gap as above even under Bell measurements.

4.5 Open questions

Is there a non trivial upper bound on the class QMA(2) e.g. like QMA(2) ⊆
EXP? More about the QMA(2)-complete problems? More open questions in
relation to the measurement operator classes, they will be discussed after the
next reading.

7



References

[ABD+08] Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman,
and Peter Shor. The power of unentanglement. In 2008 23rd An-
nual IEEE Conference on Computational Complexity, pages 223–
236. IEEE, 2008.

[CD10] Jing Chen and Andrew Drucker. Short multi-prover quantum
proofs for sat without entangled measurements. arXiv preprint
arXiv:1011.0716, 2010.

[HM12] Aram Harrow and Ashley Montanaro. Testing product
states,quantum merlin-arthur games and tensor optimization. ACM,
60(1):1–43, 2012.

[HM13] Aram W. Harrow and Ashley Montanaro. Testing product states,
quantum merlin-arthur games and tensor optimization. J. ACM,
60(1):3:1–3:43, February 2013.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity
of k-sat. Journal of Computer and System Sciences, 62(2):367–375,
2001.

[KKR04] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of
the local hamiltonian problem, 2004.

[KMY01] Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami.
Quantum certificate verification: Single versus multiple quantum
certificates. arXiv preprint quant-ph/0110006, 2001.

[KSVV02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N
Vyalyi. Classical and quantum computation. Number 47. American
Mathematical Soc., 2002.

[LCV07] Yi-Kai Liu, Matthias Christandl, and Frank Verstraete. Quantum
computational complexity of the n-representability problem: Qma
complete. Physical review letters, 98 11:110503, 2007.

[MW05] Chris Marriott and John Watrous. Quantum arthur-merlin games,
2005.

[VW15] Thomas Vidick and John Watrous. Quantum Proofs. Foundations
and Trends in Theoretical Computer Science, 2015.

8


