
Optimizing task
layout on the
Blue Gene/L
supercomputer

G. Bhanot
A. Gara

P. Heidelberger
E. Lawless

J. C. Sexton
R. Walkup

A general method for optimizing problem layout on the Blue
Genet/L (BG/L) supercomputer is described. The method takes
as input the communication matrix of an arbitrary problem as an
array with entries C(i, j), which represents the data communicated
from domain i to domain j. Given C(i, j), we implement a heuristic
map that attempts to sequentially map a domain and its
communication neighbors either to the same BG/L node or to near-
neighbor nodes on the BG/L torus, while keeping the number of
domains mapped to a BG/L node constant. We then generate a
Markov chain of maps using Monte Carlo simulation with free
energy F¼Ri, j C(i, j)H(i, j), where H(i, j) is the smallest number
of hops on the BG/L torus between domain i and domain j. For two
large parallel applications, SAGE and UMT2000, the method was
tested against the default Message Passing Interface rank order
layout on up to 2,048 BG/L nodes. It produced maps that improved
communication efficiency by up to 45%.

Introduction

The Blue Gene*/L supercomputer (BG/L) [1] is a

massively parallel computer with two communication

networks: a nearest-neighbor network with the topology

of a three-dimensional (3D) torus and a global collective

network. In normal use, the torus is the primary

communications network and is used both for point-to-

point and for many global or collective communications.

The collective network is used for collective

communications, such as MPI_REDUCE.

Compute nodes on the BG/L are logically arranged

into a 3D lattice, and the torus communications network

provides physical links only between nearest neighbors

in that lattice. Therefore, all communications between

nodes must be routed in a manner that makes use of

the available physical connections, and the cost of

communications between nodes will vary depending on

the distance between the nodes involved. The challenge

is to optimally map an arbitrary parallel application of

Message Passing Interface (MPI) tasks that minimizes the

total execution time. In most cases, total execution time is

the sum of the time for communication and the time for

computation.

In this paper, we focus on the problem of minimizing

the communication time. We describe a general method

for optimizing the mapping of parallel applications to

a grid of nodes for which communications costs are

dependent on task placement. For the purpose of

illustration, we restrict the discussion to point-to-point

communications and collective communications that are

implemented using these point-to-point communications,

and so focus only on optimizations involving the torus

network of BG/L. Collective communications using the

global collective network and compute load imbalance

between domains (if they exist in the application) can

be included in the analysis by modifying the cost

function appropriately.

The compute nodes of BG/L typically have 512 MB of

memory and two central processing units (CPUs), each

capable of a peak performance of 2.8 gigaflops (Gflops).

Thus, the peak performance of the node is 5.6 or 2.8

Gflops depending on whether the CPUs are both used for

computation or one is used for computation and the

other for communication. Each compute node has six

torus links built in. Each is connected to its six nearest

neighbors in the xþ, yþ, zþ, x�, y�, z� directions,

respectively, so there is one hop between nearest

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

489

0018-8646/05/$5.00 ª 2005 IBM

neighbors. The links on the torus have a peak bandwidth

of 1.4 Gb/s. Each node can communicate with its

neighbors at the rate of 1.4 Gb/s in each direction.

For our purposes, we assume that an application

consists of a number of domains. Computations are

performed in one domain before information is accessed

from other domains, followed by more computations,

and so on. Communication traffic is the amount of data

exchanged between domains. We assume that one or

more domains are mapped to a single BG/L node. We

seek to find the optimal mapping of the domains to BG/L

nodes such that the communication time is minimized.

Note that the definition of domain depends on how the

communication data is collected. In the examples used in

the present paper, since the data was obtained from runs

of the MPI-based applications code on BG/L, the domain

was an MPI task. However, a domain might just as well

be a single variable or a collection of variables. If the code

is used for dynamic load balancing, the data could also be

collected at runtime. In this case, a domain could be a

process or system thread.

For the purpose of this paper, we assume that

computation time is uniform across processors and

that our cost function is required to minimize only

communication time. We note that the information

necessary as input into our method can be obtained from

the runtime system (RTS) during the execution of an

application or can be provided as data from a prior

test run.

Related work
The problem of assigning tasks to the processors of a

parallel processing computer in a manner that achieves

the optimal load balance and minimizes the cost of

interprocessor communication is important to the

efficient use of parallel computers. Many groups have

done work on this problem in recent years. However,

the relative emphasis placed on computational balance

as opposed to communication costs and the different

assumptions made concerning the number of processors

and the interprocessor network architecture have led to

many different approaches to the problem.

For small numbers of processors, many techniques can

be applied successfully. For instance, a simple heuristic

followed by iterative improvement processes is developed

in [2] to optimize the layout of tasks on processor

networks with up to 64 processors. This work is unusual

in that it includes link contention and total traffic volume

during layout. A more complex algorithm, presented

in [3], produces good results for small numbers of

heterogeneous processors. However, it is assumed

that communication costs are independent of the

communication endpoints, and so, while it is useful

for processors linked by a switched network, it is less

applicable to parallel computers using more complex

network topologies.

Graph-partitioning techniques have been used in the

load-balancing problem and also in clustering tasks to

optimize locality in hierarchical networks (for instance, a

cluster of symmetric multiprocessing nodes linked by a

switched network [4]). Graph bipartitioning has also been

used for task clustering and mapping on eight-node

hypercubes [5]. Simulated annealing (SA) and related

techniques have been applied to the mapping problem

by several groups [5, 6].

SA can create good mappings but is computationally

expensive [6]. Mean field annealing is an algorithm with

similarities to SA. It is applied to problems with up to

400 tasks and 32 processors in hypercube and mesh

topologies. It is compared with SA in [6].

Other work has been limited to problems displaying

certain communication patterns. For instance, an

algorithm was developed for mapping problems with

a rectilinear topology [7]. This is extended in [8] for

problems with a k-ary n-cube work and communication

pattern.

Our work has similarities to that described above;

however, there are important differences. We are

primarily concerned with mapping N tasks to N

processors, which is a more constrained problem than

mappingM� N tasks to N processors. BG/L is far larger

than the target architectures of previous research; scaling

the mapping to thousands of nodes is essential.

Furthermore, the 3D torus of BG/L adds complexity

to the mapping problem.

Much attention has been paid to achieving partitions

of tasks that balance computational load and minimize

interpartition communication. Far less attention has been

spent on placing those partitions on processors linked

by a network, such as a torus or mesh, in which the

communication costs between different processor pairs

vary considerably. We seek to redress that imbalance in

this paper. This is especially important for a computer

such as BG/L, since the cost differential between a good

and a bad mapping in a torus increases with processor

count.

Measure of communication time and layout
quality
Consider a single communication event within an

application in which one MPI task sends a message

to another using nonblocking MPI functions. If the

MPI_IRECV is posted at time tr and the corresponding

MPI_ISEND is posted at time ts, the receiver receives the

message at a time t = max (tr, ts þ L þ S/B), where L is

the latency, S is the message size, and B is the bandwidth.

The latency and bandwidth are not just simple numbers.

In the runtime environment of a real application, they

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

490

depend on many parameters, such as the location of the

sender and receiver on the network, the availability of

buffers, and network congestion from other messages.

This makes it impossible to write a simple function

that measures the total message transit time for an

application. We must make simplifications from general

considerations.

The cost function, which is a measure of communication

time, must reflect at least the following properties:

� An increase in the length of a path increases

communication latency and should increase the cost

function. Each time a packet is passed from one node

to another, it must be routed. This introduces extra

latency.
� If a message can access multiple paths, the bandwidth

increases and the cost function should decrease. In

BG/L, each node is connected to six torus links, and

data is constrained to move toward its destination. If

two nodes are on a line in one of the three planes,

there is only one available shortest path between

them. If the two nodes are on opposite corners of a

rectangle or cuboid, there are many available paths.

The total bandwidth is limited by the number of links

into or out of the node that can actually be used by

a communication primitive. This is illustrated in

Figure 1. Thus, the maximum available bandwidth for

a communication is one, two, or three times single-

link bandwidth. Increasing the number of torus

dimensions that links use increases the available

bandwidth for communications.
� Increasing path length increases the probability of

link contention.

We claim that a cost function that attempts to reduce

the latency and contention will reduce communication

time, even though it cannot predict communication times

exactly. This claim is backed by results from experiments

on BG/L hardware, presented in the results and

discussion section.

To this end, we propose a general measure of quality of

the form
X
i;j

Cði; jÞd½pðiÞ; pð jÞ�;

where task i exchanges C(i, j) bytes with task j, tasks i, j

are placed on nodes p(i), p(j), and nodes a and b are a

distance d(a, b) apart. Our definition of distance may

depend on the characteristics of our application.

For instance, an application with many small

communications—where latency, rather than bandwidth,

is most important—might use hop count h(a, b) as

the distance metric. For an application in which

communication consists of infrequent, large, and non-

overlapping messages, one might wish to maximize

available bandwidth and use a distance metric such as

dða; bÞ ¼ 3

D
hða; bÞ;

where D is the number of dimensions used in the

shortest path from a to b. Another possible measure,

which combines aspects of the other two, is the Euclidean

distance metric

dða; bÞ ¼
ffi
ða

x
� b

x
Þ2 þ ða

y
� b

y
Þ2 þ ða

z
� b

z
Þ2

q
:

By default, we use the hop-count distance metric.

The method

Assume that we are given a problem with D domains that

are to be mapped to a BG/L computer with L3M3 N

nodes. Let C(i, j) be the amount of data communicated

from domain i to domain j, and let H(i, j) be the cost per

unit of data for communication between domain i and

domain j. C(i, j) is fixed by the underlying application

and remains unchanged and constant throughout the

optimization process.H(i, j), on the other hand, is directly

dependent on the specific mapping of domains to nodes

at any given step in the optimization and changes

constantly, depending on link utilization. For simplicity,

we assume that H(i, j) depends only on the distance

between the nodes to which domains i and j are mapped

Figure 1
(a) If a path uses only one dimension of the torus, the available
bandwidth is, at most, the bandwidth of a single link. If two or
three dimensions are used, as in (b) and (c), two or three times link
bandwidth is available. However, the extra hops may increase
latency.

(a)

(b)

(c)

s

s

d

d

d

s

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

491

and is independent of the actual amount of data to be

transmitted.

On BG/L, nodes are arranged in a 3D lattice and

connect only to their six nearest neighbors through the

torus interconnect. Each node in the lattice is labeled

by its (integer) Cartesian coordinates (x, y, z) within the

lattice. On this interconnected lattice, the simplest choice

for the H(i, j) is to set it equal to the number of hops in

the minimum path on the torus connecting node i to

node j.

With this definition, the cost function we propose to

minimize is given by

F ¼
X
i;j

Cði; jÞHði; jÞ: ð1Þ

In the following, we adopt the terminology of

simulated annealing and call F the free energy. For

numerical work, it is helpful to normalize the free energy

so that it is constrained to a fixed range. On the 3D BG/L

torus, each node has six nearest neighbors (distance one

hop), 18 next-nearest neighbors (distance two hops), etc.

The free energy F is a sum over all domains i of a term

RjC(i, j)H(i, j). The minimum achievable value for each of

these individual terms is obtained if the domains j are

‘‘dealt out’’ in order of decreasing value of C(i, j) first to

the same node as domain i, then to the nearest neighbors

of i, then to the next-to-nearest neighbors of i, etc. The

minimum achievable value for the total free energy is then

given by the sum over domains of each of these individual

domain minimum values. We denote this minimum free

energy by Fmin. In most cases (and particularly for

nontrivial patterns), it is not possible to achieve this

minimum value. Nevertheless, it is a useful concept for

normalization and as a ‘‘theoretical’’ lower bound.

The general optimization method we propose is

simulated annealing (SA) [9]. SA is an iterative method

that repeatedly attempts to improve a given configuration

by making random changes. To seed the process, an

initial configuration must be set up. We have adopted the

following method, which we have found to give good

starting configurations, but there are many other suitable

approaches possible. Define the function c(i) as

cðiÞ ¼
X
j

Cði; jÞ; ð2Þ

where c(i) is the total data communicated by domain i. By

a simple reordering, we arrange that the domains are

labeled such that cð1Þ � cð2Þ � cð3Þ � � � : The processors

of BG/L are determined by their Cartesian coordinates

(x, y, z). Let p = D/(LMN) be the number of domains

mapped to each BG/L node on average. Let n(x, y, z) be

the number of domains mapped to node (x, y, z). For

compute load balancing, we restrict n to be close to p.

The tightest constraint is to require that

IntðpÞ � nðx; y; zÞ � Intðpþ 1Þ; ð3Þ

where Int(p) is the integer part of p.

An initial heuristic map is defined by the following

algorithm:

1. Map domain i = 1 to an arbitrary location (x, y, z).

2. Map all domains with which domain i = 1

communicates either to location (x, y, z) or to its

neighboring locations on the BG/L torus while

satisfying the constraint of Equation (3).

3. Next, map domain i = 2 (if it is not yet mapped) to

an arbitrary location (x0, y0, z0) and the unmapped

domains with which it communicates either to the

same node or to a neighboring node on the torus

while satisfying the constraint of Equation (3).

4. Repeat this last step for i ¼ 3; 4; � � �; D:

This heuristic can be made more sophisticated by first

mapping those domains with the greatest communication

volume to already-mapped domains, rather than simply

mapping domains 2; 3; 4; � � � in order.

Starting from this heuristic map, we do SA to find a

minimum of the free energy F. To this end, define a

Markov chain [10] of mappings Mi; i ¼ 0; 1; 2; � � �; nf g;
where M0 is the heuristic map and Mi is derived from

Mi�1 by applying the following algorithm (called the

Metropolis algorithm [11]):

1. Introduce a new parameter b, which we interpret at

inverse temperature (b = 1/kT), and initially set b
to some small value.

2. Generate a candidate new map M0
i from Mi�1 by

either swapping two domains between randomly

chosen locations on the torus or by moving a domain

from a random location on the torus to another,

provided this does not violate Equation (3).

3. Accept M0
i ; i.e., set Mi ¼ M0

i iff

R, e
�bfFðM 0Þ=F

min
�FðM

i�1
Þ=F

min ; ð4Þ

where R is a random number uniformly distributed

in (0, 1).

4. Continue to generate new candidate mappings using

the same b value until the free energy decreases to a

stable equilibrium.

5. Now, in steps, increase b and continue the Markov

chain process until, for each new b, a new free energy

equilibrium is reached. The initial b is chosen so that

the acceptance rate is between 10% and 20%. The

final b is chosen so that the acceptance rate is

approximately zero. We chose to take 100 steps

between the initial and final values of b.

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

492

This procedure is called simulated annealing because

it is analogous to the annealing process in metallurgy,

where metals are first heated and then slowly cooled to

remove impurities. Note also the normalization used

for the free energy factors into Equation (4). This

normalization is helpful computationally.

Example application
As a simple example to test these methods, consider

a problem that has 83 domains on a regular 3D torus,

where each domain communicates a fixed amount of data

to its six nearest neighbors. We attempt to map this

problem onto an 83 83 8 BG/L torus. The problem

is small and simple, and it has an optimum map that is

obvious; however, it is complex and large enough to be

a useful test of the methods we propose here.

Figure 2 shows the structure of the communications

matrix C(i, j) for this problem. Nonzero entries in this

matrix are shown as crosses. The main adjustable

parameters in the method are the values of b that are used

and the number of iterations that are executed for any

given value of b.
For the method to be successful, it is important to

ensure that the acceptance rate for moves is not too low.

A low acceptance rate signals that the mapping is not

changing from one step to the next. A reasonable range

for the acceptance rate is 10–50%. We recall from

Equation (4) that the acceptance rate is governed by

the condition that a random number is less than the

exponential of the change in the normalized free energy

(F = Fmin) � b.
By construction, F/Fmin � 1, but for a good mapping,

we expect F/Fmin to be close to 1 in value. Typical starting

values for b are then in the range 0 � b � 10. With these

ranges, the argument of the exponential is typically less

than O(10), and reasonable acceptance rates can be

achieved for the Metropolis step.

To determine the number of iterations to execute for

a given value of b, it is sufficient to monitor the behavior

of the free energy function as the annealing proceeds.

Typically, this drops quickly for a time and then reaches a

plateau. The plateau signals the onset of equilibrium for

the given value of b, and it is usual to switch to a new

b once the plateau has been clearly established for a

given b.
Figure 3(a) shows the evolution of the normalized

free energy for an example run of the SA algorithm.

Figure 3(b) plots the values of normalized free energy

achieved at the tail end of each fixed b segment for the

same run. Observe in both figures that the value of

the normalized free energy falls steadily and eventually

achieves the ideal value 1. Inspection of the mapping

of domains to nodes for this final achieved configuration

shows that it corresponds to the ideal in which domains

are mapped to the torus in a manner in which only

nearest-neighbor communication is required.

An enhancement

The previous section has demonstrated that, at least in

simple cases, SA can be used to find a good mapping of

problem domains to BG/L compute nodes. However, the

simple implementation described above does not scale

well enough to be used on a full-size BG/L system, which

could contain up to 65,536 compute nodes. Compute

times for the simple implementation are already hours

long for optimizing layouts on O(103) processors and

would become prohibitive for the full BG/L machine.

Happily, however, the annealing method is very robust

and admits almost infinite variation. In this section we

describe a divide-and-conquer approach that we have

implemented which allows a fast generation of slightly

suboptimal mappings. This approach can be used to

generate very good mappings. In our examples, the final

maps are quite close to the optimum map found by full

SA and much better than the default MPI rank order

mapping.

For many parallel applications, the communication

matrix C(i, j) is sparse. In many problems, domains

communicate mostly with nearby domains and relatively

Figure 2
Structure of the matrix C(i, j) for the nearest-neighbor communi-
cations problem described in the text. The horizontal axis specifies
the identity of the sender, i. The vertical axis specifies the identity
of the receiver, j . A cross at a point (i, j) represents a communica-
tion between MPI task number i and MPI task number j . Notice the
regular banded structure, which is prototypical of nearest-neighbor
communications.

250

200

150

100

50

0

0 50 100 150 200 250

R
ec

ei
ve

r

Sender

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

493

infrequently with distant domains. This suggests that the

map of problem domains to nodes might be constructed

one domain at a time. The advantages of such an

approach are clear. For an n-node system, the possible

mappings that have to be searched for an optimum layout

are O(n!). It is clearly more efficient to optimize k maps of

size n = k than one map of size n. Of course, in general,

the free energy minimum that results from a divide-and-

conquer approach is not optimum because the search

space over which the optimization is done is truncated.

The divide-and-conquer approach we have

implemented proceeds as follows. First, a graph G(V, E)

is constructed in which each vertex v 2 V represents a

problem domain. Two vertices i, j are joined by an edge

eij 2 E if C(i, j) . 0. Each edge is assigned a weight C(i, j).

A subgraph S(Vs, Es) of G consists of a subset Vs of V

and a subset Es of E where 8eij 2 Es, i, j 2 Vs.

The communications graph G is now divided into

subgraphs to minimize communications between

subgraphs. We have chosen to use a public domain

package called METIS [12] for this partitioning. METIS

is the standard tool in graph partitioning. It attempts to

produce balanced partitions that minimize the edge cut of

the partitions. The edge cut is the sum of the weights of all

edges that link vertices belonging to different partitions.

This partitioning scheme allows us to identify groups of

problem domains that are maximally independent from

one another and so can be independently assigned to

compute nodes with minimal interference.

Having obtained a METIS partitioning, we proceed to

sequentially map one subgraph at a time to a set of nodes

using the heuristic method defined in the method section

above; we then use SA to optimize the subgraph maps

one by one. At any given step, annealing is applied only

to the subgraph being mapped. Those subgraphs that

were previously mapped are left unchanged. The first

subgraph to be mapped to the compute nodes is selected

at random. Thereafter, the next subgraph to be mapped is

determined by choosing the subgraph with the largest

connectivity to subgraphs already mapped.

The method is presented in detail in Figure 4.

An important aspect of the process is the decision on

the size of the individual partitions. Small partitions

anneal quickly. However, large partitions are required to

achieve optimum or close to optimum mappings. In a

subgraph S(Vs, Es) of G, the ratio

l ¼

X
i; j2V

s

Cði; jÞ
X

i2V
s
; j2V

Cði; jÞ
ð5Þ

describes how connected the subgraph S is to the rest of

the communications graph G. Constraining l would be the

method normally used to control quality in a production

implementation of annealing for mapping optimization.

For this paper, however, we have not adopted this

approach. Instead, we show results for various partition

sizes. On an IBM pSeries* 1,200-MHz POWER4*

processor, the typical execution time for optimization

using small partitions (e.g., eight nodes per partition, 128

partitions total) is 30 minutes. Typical execution time for

Figure 3
(a) Normalized free energy as a function of iteration. The vertical
dividers on this plot define the points at which is increased.
Within each fixed band, the free energy initially falls and then
plateaus. As one moves left to right between bands, increases
and the free energy equilibrium or plateau value decreases. Early
in the simulation, convergence is slow, and plateaus are not really
obvious. For the last change shown, convergence occurs very
quickly. This type of convergence profile is quite common in
annealing. (b) The converged plateau value of the free energy
achieved as a function of . For this problem, the free energy
converges to the ideal minimum value of 1 as increases beyond
a certain value. The resulting layout is the optimal mapping of
domains to the BG/L torus for a 3D nearest-neighbor problem.

�

�

�

�

�

�

�

F
/F

m
in

Iterations
(a)

B
 �

 1
,5

09

B
 �

 1
,5

56

B
 �

 1
,6

03

B
 �

 1
,6

50

B
 �

 1
,6

97

7

6

5

4

3

2

1

0
0 500 1,000 1,500 2,000 2,500

F
/F

m
in

(b)

1.
65

 �
 1

08

1.
75

 �
 1

08

1.
85

 �
 1

08

1.
95

 �
 1

08

2.
05

 �
 1

08

1.
7

�
 1

08

1.
8

�
 1

08

1.
9

�
 1

08

2.
0

�
 1

08

3.0

2.5

2.0

1.5

1.0

0.5

0

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

494

optimization using large partitions (e.g., 256 nodes per

partition, four partitions total) is ten hours.

Results and discussion
As a test of these methods, we consider four separate

communication problems.

� Cubic 1: This is the 3D nearest-neighbor problem

already discussed in the example application section

above. There is one domain for each node on an

83 83 8 torus, and the task is to lay them out on an

83 83 8 BG/L torus. The communications pattern is

that each domain sends equal-sized packets to each

of its six nearest neighbors on the torus.
� Cubic 2: This problem is similar to Cubic 1, but

instead domains send full-sized packets to their six

nearest neighbors (distance one hop) and half-sized

packets to their six next-nearest neighbors (distance

two hops) along the Cartesian directions of the torus.

Packets are sent in straight lines only; no turns on the

grid are included.
� SAGE: SAGE, from Science Applications

International Corporation (SAIC), stands for the

SAIC adaptive grid Eulerian hydrodynamics

application [13]. In the example used here, we

consider only a simple case with the timing_h input

set, which does heat conduction and hydrodynamics

without adaptive mesh refinement. The

communications pattern is complex enough that this

case is useful by itself. The requirements of the full

code with adaptive mesh refinement (AMR) would be

similar, requiring us to find a mapping to BG/L every

time the problem grid is redefined. The main points of

the analysis are the same in the full code, and our

methods would also apply in this case.

SAGE uses a regular Cartesian grid, in which cells

are grouped into blocks, with each block containing

eight cells in a 23 23 2 configuration. Blocks are

distributed in (x, y, z) order. For scaling purposes,

we use a constant number of cells per task. With the

timing_h input set, the global domain is a cube. For

small task counts, the decomposition strategy results

in something close to a slab decomposition of the

global domain. The precise shape of the local domain

depends on the number of cells per task and on the

number of tasks.
� UMT2000: This is an ASCI Purple Benchmark, which

solves a photon transport problem on an unstructured

mesh [14]. The application is written in Fortran 90

using MPI and, optionally, OpenMP [15]. The

unstructured mesh is statically partitioned in the

code using the METIS library. Since there is a

significant spread in the amount of computational

work per task, this code can have a serious compute

load imbalance. However, in this paper, we address

only its communication imbalance, which is equally

significant.

The communications patterns for the Cubic 2, SAGE,

and UMT2000 are shown in Figures 5(a)–5(c). The Cubic

and SAGE cases have regular communications patterns,

while UMT2000 has an irregular pattern.

Tables 1, 2, and 3 give the optimization results for

various grid sizes and SA variants for each of the test

cases studied. In these tables, ideal denotes the ideal

‘‘theoretical’’ value for the free energy discussed before.

Heuristic is the value achieved when the heuristic

placement algorithm in the section above on method is

used. In the tables, MPI rank order is the value achieved

when domains are placed in MPI rank order. We define

random as the average value achieved for 100 random

placements of domains onto the BG/L torus. The ideal

Figure 4
The partition algorithm recursively bisects a graph until the
subgraphs are small enough to be mapped to the torus using
simulated annealing.

Input
T, the set of compute nodes in the BG/L torus network
The full unpartitioned graph G(V, E)
A subgraph S(Vs, Es) of G
P V, where p P are vertices already mapped to compute nodes in T
A mapping M : P T

L, a limit on subdivisions.

Output:
Updates M to include mappings from Vs to T . Updates P to include Vs

(1) Use METIS to divide S into S1(V1, E1) and S2(V2, E2)

(2) l1
�i, j�V1

C(i , j)

�i�V1, j�V C(i , j)

�i, j�V2
C(i , j)

�i�V2, j�V C(i , j)
, l2

(3) if l1 � L or l2 � L
(4) Assign each v Vs to a node t T using simulated annealing
(5) Update P: P P Vs

(6) Update M to include the mappings from Vs to T

(7) else
(8) c1 �i�V1, j�PC(i , j)

(9) c2 �i�V2, j�PC(i , j)

(10) if c1 � c2

(11) Partition(T, G, S1, P, M, L)

(12) Partition(T, G, S2, P, M, L)

(13) else

(14) Partition(T, G, S2, P, M, L)

(15) Partition(T, G, S1, P, M, L)

(16) return M

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

495

Figure 5

(a) Communications pattern for the Cubic 2 problem on an 8 � 8 � 8
torus. For all three plots, a cross at a point (i, j) represents a
communication between MPI task number i and MPI task number j.
(b) Communications pattern for SAGE on an 8 � 8 � 8 torus.
SAGE has an extremely regular communications pattern where
nodes communicate with some of their MPI rank order neighbors.
We show only a subset of the full pattern here. (c) Communications
pattern for UMT2000 on an 8 � 8 � 8 grid.

0 50 100 150 200 250

R
ec

ei
ve

r
R

ec
ei

ve
r

Sender
(a)

65 70 75 80 85 90 95
Sender

(b)

0 50 100 150 200 250

R
ec

ei
ve

r

Sender
(c)

250

200

150

100

50

0

95

90

85

80

75

70

65

250

200

150

100

50

0

Table 1 Optimization results achieved for the Cubic 1 and

Cubic 2 cases. These are 3D nearest- and next-to-nearest-neighbor

mapping problems, chosen because the ideal mapping is obvious

and easy to identify. The ideal mapping case has a normalized free

energy of 1. The heuristic, MPI rank order, and random cases

provide reference values for the free energy values, which can be

achieved by the various placement strategies described in the paper.

For these problems, we attempted annealing only with a single

partition (SA 1) containing all of the nodes, which generated the

optimum layout with normalized free energy equal to 1 (exact

solution).

Method Cost, F Normalized cost,

F/Fmin

Cubic 1, 512 nodes

Ideal 3,072 1.0

Heuristic 7,360 2.4

MPI rank order 3,072 1.0

Random 18,245 5.94

SA 1 3,072 1.0

Cubic 2, 512 nodes

Ideal 12,288 1.0

Heuristic 25,956 2.11

MPI rank order 12,288 1.0

Random 54,820 4.56

SA 1 12,288 1.0

Table 2 Results achieved for UMT2000. The improvement

over the default mapping for MPI is a factor of 1.68 and 1.65 for

256 and 1,024 tasks, respectively.

Method Cost, F Normalized cost,

F/Fmin

UMT2000, 256 nodes

Ideal 193,516 1

Heuristic 389,722 2.01

MPI rank order 420,990 2.18

Random 776,693 4.01

SA 7 264,394 1.37

SA 4 282,490 1.46

SA 2 267,286 1.38

SA 1 252,398 1.30

UMT2000, 1,024 nodes

Ideal 782,708 1

Heuristic 1,714,512 2.19

MPI rank order 2,002,734 2.56

Random 4,967,656 6.35

SA 32 1,479,240 1.89

SA 18 1,486,504 1.90

SA 14 1,451,362 1.85

SA 8 1,309,312 1.67

SA 4 1,280,488 1.64

SA 2 1,252,798 1.60

SA 1 1,217,352 1.55

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

496

and random cases respectively provide lower and upper

bounds for the normalized free energy. Finally, the SA

n entries provide the results achieved for the divide-and-

conquer variant in which the domains are divided into

n subdomains using METIS, and placement of each of

these subdomains is successively optimized until the full

problem has been mapped. In this variant, the SA 1 case

represents a full SA run with one partition containing all

nodes.

Figure 6 shows a typical convergence curve generated

by the divide-and-conquer approach. Table 1 shows that

the method succeeds with the Cubic 1 and Cubic 2 maps

where, as expected, it finds the known optimal map.

For UMT2000 (Table 2), the improvement in the cost

function over the default map (MPI rank order) is

by factors of 1.68 and 1.65 for 256 and 1,024 tasks,

respectively. For SAGE (Table 3), the improvement

over the default MPI map is by factors of 1.52 and 2.45

for 256 and 2,048 tasks, respectively. These are quite

significant effects and lead to improved communication

performance, as we demonstrate in the next section. We

are confident that the improvements for larger task

counts will be equal or better.

Thus far we have discussed the improvement in the

free-energy value. We now present results showing the

variation in measured communication times when

different mappings are used. An application was run on

the BG/L hardware using a variety of mappings. The

runtime for each mapping was recorded, and, more

significantly, the time the application spent in MPI point-

to-point communications was measured. We chose SAGE

on a 512-node partition as the most appropriate

application, since it is more communication-bound than

UMT2000. The mappings were created using the methods

discussed above. In addition, the best known handcrafted

map was used. We use the costs and times associated with

MPI rank order as normalization constants.

Figure 7 plots the improvement factor in cost function

and communication time for the mappings. Table 4 shows

the costs and communication times relative to the default

MPI rank order map; the results are interesting. The best

mapping, created by a single-partition SA run, shows a

factor of 1.79 improvement over the default MPI rank

order map. The heuristic method and the four-partition

SA run also show improvements by a factor of more than

1.7. In addition, all of the SA runs and the heuristic

method generate maps with lower communication times

than the handcrafted map. However, it is necessary to

note that the handcrafted map actually has the lowest free

Table 3 Results achieved for SAGE. The improvement over

default MPI layout is a factor of 1.52 and 2.45 for 256 and 2,048

MPI tasks, respectively.

Method Cost, F Normalized cost,

F/Fmin

SAGE, 256 nodes

Ideal 169,152 1

Heuristic 289,892 1.71

MPI rank order 366,194 2.16

Random 826,264 4.88

SA 32 303,184 1.79

SA 16 264,170 1.56

SA 8 269,446 1.59

SA 4 256,714 1.52

SA 2 248,712 1.47

SA 1 239,392 1.42

SAGE, 2,048 nodes

Ideal 730,958 1

Heuristic 1,019,078 1.39

MPI rank order 2,383,612 3.26

Random 7,257,358 9.93

SA 128 1,110,450 1.52

SA 64 1,105,844 1.51

SA 34 1,131,802 1.55

SA 32 1,127,680 1.54

SA 16 1,066,160 1.46

SA 4 988,772 1.35

SA 1 975,400 1.33

Figure 6
Convergence curve for the UMT2000 problem using the divide-
and-conquer approach. The vertical jumps locate the positions in
the simulation at which another subgraph is added to the
problem. At a subgraph addition, the temperature is increased;
then the added subgraph is optimized by annealing. The typical
annealing profile of initial fast decrease, then plateau, is
observed. Notice that the free energy values achieved for the
plateaus increase from left to right. This is because, at each step,
an additional subgraph has been mapped, and the free energy has
more terms contributing. The number of steps equals the number
of subgraphs used.

0

5
�

 1
07

1
�

 1
08

1.
5

�
 1

08

2
�

 1
08

2.
5

�
 1

08

3
�

 1
08

3.
5

�
 1

08

F
/F

m
in

Iterations

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

497

energy, and in addition, the relationship between free

energy and communication time is not linear. This is not

surprising, since the free energy cost function does not

model all aspects of the torus network. The premise upon

which the cost function was chosen is that by locating

those domains that communicate with one another close

together, the total communication time should be

reduced. The cost function does not fully model the

communications patterns or network behavior (this

would be prohibitively expensive), and so there is not

an exact match between reduced free energy cost and

reduced communication time. This is particularly

noticeable when comparing the random and the MPI

rank order layouts, which, for the SAGE application,

are two extremes.

Summary and future prospects
In this paper we have presented several methods for

generating good mappings. The choice of method to be

used depends on the application. For a small application

that runs for a short time, our simple heuristic method

may be best. For larger applications, which may run for

extended periods of time, the extra time required to

generate a potentially better map using SA might be

justified by the reduction in communication time. The

communication characteristics of an application may

themselves determine which mapping method works best.

For instance, the simple heuristic method is sufficient for

the SAGE application, while the SA method gives much

better results for UMT2000 (Table 2).

For the cases presented in this paper, we found that

the SA method produces good mappings and has the

potential to be used as a general layout-optimization

tool for parallel codes. Since the current serial code we

have implemented to test the method is unoptimized,

computation time to find the optimum map can be large

(several hours on a typical personal computer.) However,

the SA algorithm can easily be parallelized. For

production implementation, good parallel code for

our algorithm would be required and could itself be

implemented on BG/L.

If one or more of the methods described here is

practically useful (leads to performance gains across a

spectrum of real applications), it could be incorporated

into the runtime system of the BG/L computer, especially

for applications that are expected to run repeatedly for

the same problem sizes after an optimum layout is

discovered. This can easily be done for the heuristic

algorithm with little impact on application performance,

and it might even be feasible with a parallelized

Figure 7
Improvement factor in cost function and communication time
over the default MPI rank order mapping. The handcrafted map is
described in the text and is available in this case only for machine
sizes that are a multiple of 23, such as 8, 64, 512, etc.

Random Rank
order

SA 8 SA 4 SA 1 Heuristic Hand-
crafted

R
el

at
iv

e
im

pr
ov

em
en

t f
ro

m
 r

an
k

or
de

r
m

ap
pi

ng

Mapping

Free energy cost function

Measured communication time

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

Table 4 Communication time results for a 512-node processor SAGE run using several different maps. The cost and time of the MPI

rank order map are used respectively to normalize the costs and communication times.

Method Normalized

cost

Improvement

in cost

Communication

time

Improvement in

communication

time

MPI rank order 1 1 22.818 1

Random 1.322 0.76 19.614 1.163

Handcrafted 0.249 4.01 14.327 1.593

SA 8 0.270 3.70 13.837 1.649

SA 4 0.267 3.75 13.207 1.728

Heuristic 0.254 3.93 12.790 1.784

SA 1 0.257 3.90 12.731 1.792

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

498

implementation of the SA methods. It could also find

use for AMR codes in which the mesh is dynamically

redefined during the computation. Indeed, SAGE uses

AMR, and the heuristic described here should be very

effective for this application.

Acknowledgments
The Blue Gene/L project has been supported and

partially funded by the Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Lawrence Livermore National Laboratory

Subcontract No. B517552.

* Trademark or registered trademark of International Business
Machines Corporation.

References
1. G. Bhanot, D. Chen, A. Gara, and P. Vranas, ‘‘The Blue

Gene/L Supercomputer,’’ Nucl. Phys. B (Proc. Suppl.) 119,
114–121 (2003).

2. V. A. Dixit-Radiya and D. K. Panda, ‘‘Task Assignment on
Distributed-Memory Systems with Adaptive Wormhole
Routing,’’ Proceedings of the Symposium on Parallel and
Distributed Processing (SPDP), 1993, pp. 674–681.

3. A. Billionnet, M. C. Costa, and A. Sutter, ‘‘An Efficient
Algorithm for a Task Allocation Problem,’’ J. ACM 39,
No. 3, 502–518 (July 1992).

4. J. L. Träff, ‘‘Implementing the MPI Process Topology
Mechanism,’’ Proceedings of the ACM/IEEE Conference on
Supercomputing, 2002, pp. 1–14; see http://sc-2002.org/
paperpdfs/pap.pap122.pdf.

5. F. Ercal, J. Ramanujam, and P. Sadayappan, ‘‘Task
Allocation onto a Hypercube by Recursive Mincut
Bipartitioning,’’ J. Parallel & Distr. Computing 10, No. 1,
35–44 (September 1990).

6. T. Bultan and C. Aykanat, ‘‘A New Mapping Heuristic Based
on Mean Field Annealing,’’ J. Parallel & Distr. Computing 16,
No. 4, 292–305 (December 1992).

7. D. Nicol, ‘‘Rectilinear Partitioning of Irregular Data Parallel
Computations,’’ J. Parallel & Distr. Computing 23, No. 2,
119–134 (November 1994).

8. D. Nicol and W. Mao, ‘‘On Bottleneck Partitioning of k-ary
n-cubes,’’ Parallel Process. Lett. 6, No. 6, 389–399 (June 1996).

9. P. J. M. van Laarhoven and E. H. L. Aarts, Simulated
Annealing: Theory and Applications, D. Reidel Publishing Co.,
Dordrecht, Netherlands, 1987; ISBN: 9027725136.

10. P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo
Stimulation, and Queues, Springer-Verlag, New York, 1999;
ISBN: 0387985093.

11. Markov Chain Monte Carlo in Practice, W. R. Gilks,
S. Richardson, and D. J. Spiegelhalter, Eds., Chapman and
Hall/CRC, Boca Raton, FL, 1996; ISBN: 0412055511.
I. Manno, Introduction to the Monte-Carlo Method,
Akademiai Kiado, Budapest, Hungary, 1999; ISBN:
9630576155.

12. See http://www-users.cs.umn.edu/;karypis/metis.
13. D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J.

Wasserman, and M. Gittings, ‘‘Predictive Performance and
Scalability Modeling of a Large-Scale Application,’’
Proceedings of the ACM/IEEE Conference on Supercomputing,
2001, pp. 37–37; see http://www.sc2001.org/papers/
pap.pap255.pdf.

14. ASCI Purple Benchmark Web page; see http://www.llnl.gov/
asci/purple/benchmarks/.

15. See http://www.openmp.org.

Received July 20, 2004; accepted for publication
August 20,

Gyan Bhanot IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gyan@us.ibm.com). Dr. Bhanot is a Research Staff Member
at the IBM Thomas J. Watson Research Center. He received his
Ph.D. degree in theoretical physics from Cornell University. He
works on bioinformatics, systems biology, and parallel
computation.

Alan Gara IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(alangara@us.ibm.com). Dr. Gara is a Research Staff Member at
the IBM Thomas J. Watson Research Center. He received his
Ph.D. degree in physics from the University of Wisconsin at
Madison in 1986. In 1998 Dr. Gara received the Gordon Bell
Award for the QCDSP supercomputer in the most cost-effective
category. He is the chief architect of the Blue Gene/L
supercomputer. Dr. Gara also led the design and verification of the
Blue Gene/L compute ASIC as well as the bring-up of the Blue
Gene/L prototype system.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received his
B.A. degree in mathematics from Oberlin College in 1974 and his
Ph.D. degree in operations research from Stanford University in
1978. He has been a Research Staff Member at the IBM Thomas J.
Watson Research Center since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete event simulations, parallel simulation, and
parallel computer architectures. He has authored more than 100
papers in these areas. Dr. Heidelberger has served as Editor-in-
Chief of the ACM Transactions on Modeling and Computer
Simulation. He was the general chairman of the ACM Special
Interest Group on Measurement and Evaluation (SIGMETRICS)
Performance 2001 Conference, the program co-chairman of the
ACM SIGMETRICS Performance 1992 Conference, and the
program chairman of the 1989 Winter Simulation Conference.
Dr. Heidelberger is currently the vice president of ACM
SIGMETRICS; he is a Fellow of the ACM and the IEEE.

Eoin Lawless Trinity Centre for High Performance
Computing, O’Reilly Institute, Trinity College, Dublin 2, Ireland
(eoin@maths.tcd.ie). Dr. Lawless is a Research Intern at the IBM
Thomas J. Watson Research Center. He received his Ph.D. degree
in parallel network simulation from Trinity College, Dublin, and
works in network simulation and parallel computation.

James C. Sexton IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (sextonjc@us.ibm.com). Dr. Sexton is a Research Staff
Member at the IBM Thomas J. Watson Research Center. He
received his Ph.D. degree in theoretical physics from Columbia
University and has held research positions at the Fermi National
Accelerator Laboratory (Fermilab), the Institute of Advanced
Studies at Princeton University, and Trinity College, Dublin.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 G. BHANOT ET AL.

499

2004; Internet publication April 6, 2005

Robert Walkup IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (walkup@us.ibm.com). Dr. Walkup is a Research Staff
Member at the IBM Thomas J. Watson Research Center. He
received his Ph.D. degree in physics from the Massachusetts
Institute of Technology. He currently works on high-performance
computing algorithms.

G. BHANOT ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

500

