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Abstract—With the advent of High Performance Computing 
(HPC) in the large-scale parallel computational environment, 
job scheduling and resource allocation techniques are required 
to deliver the Quality of Service (QoS) and resource 
management. Therefore, job scheduling on a large-scale 
parallel system has been studied to: (a) minimize the queue 
time and response time, and (b) maximize the overall system 
utilization. We compare and analyze thirteen job scheduling 
policies to analyze their behavior. The set of job scheduling 
policies include: (a) priority-based policies, (b) first fit, (c) 
backfilling techniques, and (d) window-based policies. All of 
the policies are extensively simulated and compared. A real 
data center workload comprised of 22385 jobs is used for 
simulation. We analyze the: (a) queue time, (b) response time, 
and (c) slowdown ratio to evaluate the policies. Moreover, we 
present a comprehensive workload characterization that can 
be used as a tool for optimizing system’s performance and for 
scheduler design. We investigate four categories of the 
workload characteristics including: (a) Narrow, (b) Wide, (c) 
Short, and (d) Long for detailed analysis of the schedulers’ 
performance. This study highlights the strengths and weakness 
of various job scheduling polices and helps to choose an 
appropriate job scheduling policy in a given scenario. 

Keywords- Large-scale Parallel Computational Systems; Job 
Scheduling; Workload Characterization;  Data center; 

I. INTRODUCTION 

Scientific organizations are increasingly adopting high 
performance computing (HPC) for solving large problems, 
which increases the computational and storage needs. In the 
last decade, various scientific organizations have spent ample 
budget to carry out research projects using supercomputers 
[1]. Because of the fact that supercomputers are unaffordable 
for various organizations, they were forced to choose low-
budget solutions. Consequently, cloud environment emerged 
as an alternate to provide the facility of large-scale parallel 
computations. Currently, many cloud Resource Providers 
(RPs) offer thousands of computational nodes and variety of 
services to facilitate end-users.  

In the large-scale parallel computational environments, 
the end-users submit their requests unaware of the resource 
allocation. Unusually, these requests are complex jobs,
which may be computation-intensive (i.e., job demands 

more CPU time) or data-intensive (i.e., job demands more 
storage space and communication). Moreover, these requests 
may require different levels of Quality of Service (QoS), 
including job turnaround time and queue time. Furthermore,
the large-scale parallel computational environments consist 
of (a) the mixture of applications and (b) a pool of finite 
resources meeting the demands of end-users.  

For the above identified factors, RPs pay considerable 
attention to resource management to deliver the required 
QoS and enhance system utilization. Several researchers 
focus on resource management to optimize the system 
performance considering various QoS constraints. The job 
scheduling policy is one of the major components of 
resource management system for solving the above problems 
in such environments. A scheduling process involves 
assigning resources to jobs such that no other jobs access the 
resources at the same time interval [10]. However, due to 
dynamic nature of the workload, the scheduling problem is 
hard to solve, and an active research direction for resource 
management. The scheduling policy should behave equally 
well considering the resource heterogeneity and the 
workload variability. 

Considering the aforementioned issues, the contribution 
of this paper is two-fold: (a) comprehensive characterization 
of real world workloads, and (b) comparison and analysis of 
a set of scheduling policies to evaluate system’s
performance. The analysis of job scheduling policies will 
help to select an appropriate job scheduling policy for a
given scenario. Additionally, this paper presents an 
investigation that how workload characteristics affect job-
scheduling performance. Collecting log files from a real 
production system is a common approach to estimate the 
future workloads [11]. Therefore, we collected a real data 
center workload for the experimental evaluation to simulate 
and analyze the policies considered in this paper. As the 
workload characterization is a major factor for evaluation of 
the system performance [12], we present a comprehensive 
characterization. The study of workload characterization 
motivates to interpret the difference between jobs’
computation time, and identify the similar and repeatable 
workload trends.
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We examine thirteen job-scheduling policies: five 
priority-based policies, one tuning policy, one window-based 
policy, and two backfilling techniques. The priority-based 
scheduling policies are: (a) First Come First Serve (FCFS), 
(b) Smallest Job First (SJF), (c) Largest Job First (LJF), (d)
Minimum estimated Execution Time (MinET), and (e)
Maximum estimated Execution Time (MaxET). The 
aforementioned priority-based scheduling policies are tuned 
by applying the First Fit (FF) technique. 

Moreover, we use a window based scheduling policy 
called Window-K. Furthermore, we consider two backfilling 
techniques namely: (a) Aggressive Backfilling and (b) K-
reserved based technique. Both backfilling techniques work 
in conjunction with the FCFS policy.  

We simulate all of these scheduling policies with real 
data center workload. In all of the studied scheduling 
policies, the assumptions and job parameters (i.e., number of 
jobs, tasks in each job, estimated time of job execution, and 
submission time of each job) remain same to maintain a fair 
comparison. The aforementioned policies are analyzed by 
numerous results wherein we split the workload to create 
multiple datasets. This assumption allows determining, 
which job scheduling policy produces better results under 
different datasets. We use four class-based job observations 
for detailed analysis and comparison of scheduler 
performance. We performed detailed analysis and observed 
interesting findings, such as: (a) MinET and SJF when 
combined with FF technique exhibit better performance 
compared to other policies, and (b) a large number of small 
jobs in the workload can stop the MaxET policy for 
producing at least same results compared to MinET policy 
with certain job characteristics.  

The rest of the paper is organized as follows. Section II
states the related work, followed by the comprehensive 
characterization and analysis of data center workload in 
Section III. Section IV presents the simulation results of the 
real data center workload using several well-known job-
scheduling policies. Performance analysis and comparison 
analysis is detailed in Section V. Finally, Section VI
concludes the paper and highlights future research directions. 

II. RELATED WORK

In large-scale parallel computational environment, RP 
offers dynamic and geographically distributed access to 
computational and storage resources. Moreover, RP aims to 
efficiently utilize the finite resources to a vast number of 
users, and to maintain the different QoS levels [2]. The 
resource management problem can be handled by selecting 
an appropriate job scheduling technique for performance 
optimization. A vast body of research such as [3] - [9] has 
focused on resource management through scheduling 
techniques to address the problem of resource allocation 
under the different QoS constraints. For instance, author in 
[3] propose metric-aware scheduling, which enables the 
scheduler to balance competing scheduling goals represented 
by different metrics, such as job waiting time, fairness, and 

system utilization. Khan used a self-adaptive weighted sum 
technique in [4], [5], game theoretical methodologies in [6], 
and goal programming approach in [7] to optimize the 
system performance for grid resource allocation under 
different QoS constraints. Tracy et al. [8] studied eleven 
static heuristics for mapping a class of independent task onto 
heterogeneous distributed computing system. The authors 
analyzed and implemented a collection of task mapping 
policies under one set of common assumptions. The author 
in [9] compared the performance of six online scheduling 
algorithms for batch jobs by simulating keeping in 
consideration the three objective functions including 
makespan, average flowtime, and maximum wait-time. This 
paper addresses the similar problem of system performance 
through a comparative study of job scheduling strategies. 

Additionally, these environments respond to large 
number of users with pay-per-use and pay-as-you-go
methods, and execute several jobs in parallel. These jobs 
require long execution times and are considered 
computation-intensive. The expected workloads for large-
scale parallel computational environments consist of a
mixture of applications that demand different resources, 
which result in highly variable workloads [13]. Feitelson et 
al. [23] described parallel workload models in detail, and 
explained standard workload format for large-scale parallel 
computing environments. The author used publically 
available parallel workloads from [24] that consist of
various real world workloads obtained from several large-
scale parallel computers. These workloads have been 
characterized and analyzed in [26], [27], and observed 
similarities and differences in workload characteristics, such 
as different arrival patterns in peak or non-peak intervals 
and “power-of-two” number of processor requirement for 
job execution. Workload characterization is considered a 
useful approach for system design. Therefore, we examine 
and characterize the workloads in different perspectives to 
find out similarities and differences that can be used as a 
tool for system’s performance optimization. 

In the state-of-the-art, various authors used publically 
available workloads to analyze scheduler performance. Most 
of the authors make certain assumptions about the nature of 
jobs to present a specific real system for their experiments.
In contrast, we have collected the log files from a real data 
center for an evaluation that is closer to real scenarios.
Moreover, we study a set of scheduling policies to analyze 
and compare simulation results, highlighting their 
performance. 

III. CHARATERIZATION OF DATA CENTER WORKLOAD

The system performance is evaluated considering the 
characteristics of hardware and software components, as well 
as the workload it processes [12]. Workload characterization 
helps in understanding overall behavior of the system 
highlighting, job arrival rate, job size, and job length. Major 
challenges include:  (a) how to manage the system for 
different loads, (b) how to utilize the resources efficiently,
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(c) how to meet user demands, and (d) how to minimize the 
Total Cost of Ownership (TCO). Aforementioned questions 
mandate the RPs to select appropriate resource management 
techniques, such as job scheduling policies (see Section 
IV.A).    

A. Workload’s information
We characterized a real data center workload from the 

Center for Computational Research (CCR) of State 
University of New York at Buffalo to evaluate the system 
performance. The data center is a collection of multiple 
computational resources clustered together using 
communication infrastructure, which fall into two categories: 
(a) homogeneous and (b) heterogeneous resources. The 
resources in homogeneous systems are similar in terms of 
size and capacity, in which a job executes in similar capacity,
whereas the resources in heterogeneous system are organized 
with different specification.

The workloads were collected during 30 days’ time 
period from 20 February 2009 to 22 March 2009. A total of
22385 jobs were executed on more than 1000 dual processor 
nodes [29], [30]. A complete specification of the data center 
is presented in Table I.   

TABLE I. FULL SPECIFICATION OF DATA CENTER 

Time Duration 20 Feb. 2009 to 22 Mar. 2009
Total Jobs ran out on DC 22385
Total Distinct Nodes 1045
Processor name 1056 Dell PowerEdge SC1425 nodes
Processor Speed 3.0GHz or 3.2GHz
OS x86 64 Linux
Peak performance 13 TFlop/s

B. Job’s information
A job is generated by a user and submitted to the system. 

The system in turn, according to its scheduling policy, 
allocates a number of processors meeting the demands of the 
job in question. In this section, we characterize jobs 
according to different perspectives, such as job arrival rate 
and job size. Fig. 1 shows the total number of jobs arrived 
per hour in 30-day cycle. From this figure we can make two 

observations: (a) there are fluctuations in the job arrival rate 
per hour, (b) the system experiences high job arrival rates in 
specific time intervals, and (c) job arrival rate does not 
follow a uniform distribution at hourly cycle. 

In terms of the job size we make the following 
observations. The job size can be well explained in a 2D 
chart, with y axis representing the number of processors 
while x axis representing the execution time (see Section 
IV.A) [14]. Therefore, we distribute the job size according 
to: (i) job’s width representing the number of CPUs required 
by the job in question and (ii) job’s length representing the 
execution time of the respective job. The above perspectives 
are further classified into four categories: (a) Narrow, (b)
Wide, (c) Short, and (d) Long. Specifically, regarding (i) a
job requests either a single CPU (Narrow category) or an 
even number of CPUs (Wide category). On the other 
extreme (job’s length), a job is executed within either an 
hour (Short category) or more than an hour (Long category). 
The above categories are classified based on the 
aforementioned workloads. Fig. 2 shows the job distribution 
according to their width (CPU requirement). Our analysis 
revealed that the jobs demand either single CPU (i.e., 
Narrow jobs) or even number of CPUs (i.e., Wide jobs). It is 
worth mentioning that the number of Narrow jobs is 
dominant, i.e., 79% percent of the total jobs, whereas, 21% 
of the total jobs are in Wide category.

The job length exhibits the time length of the job being 
executed. We observed in Table II that almost 50% of the 
total jobs belong to Short category. Consequently, the rest of 
them belong to Long category.  

TABLE II. BREAKDOWN DISTRIBUTION FOR JOB LENGTH 

Job length No. of jobs % of jobs
< 1 hour (Short) 10428 46.58
> 1 hour (Long) 11957 53.42

Total 22385 100
       
Table III and IV present the classification of the jobs in 

(a) Short and (b) Long categories. It can be observed that 
most of the Short jobs (around 86%) are executed within 18
minutes, while around 66.6% of the long jobs are executed 
within 12 hours.  

Fig. 1 Jobs arriving per hour Fig. 2: Jobs breakdown according to number of CPUs
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TABLE III. BREAKDOWN DISTRIBUTION OF THE SHORT JOBS 

Job length No. of jobs % of jobs
1 Min. 1239 5.53
2~5 Min. 504 2.25
6~10 Min. 1485 6.63
11~15 Min. 1858 8.30
16 Min. 1166 5.21
17 Min. 1777 7.94
18 Min. 968 4.32
18~59 Min. 1431 6.39
Total 10428 46.58

TABLE IV. BREAKDOWN DISTRIBUTION OF THE LONG JOBS

Job length No. of jobs % of jobs
1~1.5 hours 1368 6.11
1.5~2 hours 1339 5.98
2~6 hours 1210 5.41
7 hours 1754 7.84
8 hours 1785 7.97
8~12 hours 511 2.28
12~15 hours 667 2.98
16 hours 1408 6.29
16~18 hours 447 2.00
18~24 hours 595 2.66
24~48 hours 511 2.28
>48 hours 362 1.62
Total 11957 53.42

We also analyzed the job size to address the correlation 
between both job width and job length, shown in Table V.
The correlation table reveals that Narrow jobs dominate all 
of the categories. Moreover, Short jobs with execution time 
between 11 to 20 minutes and Long jobs with execution time 
more than 11 hours are also prevailing. 

TABLE V. PERCENTAGE BREAKDOWN FOR CORRELATION BETWEEN 
JOBS WIDTH AND LENGTH 

Job Size
Job Width

1 CPU 2~24 CPUs > 32 CPUs Total jobs

Jo
b 

Le
ng

th

< 1 Min. 4.83 0.58 0.13 5.55
2~10 Min. 7.60 0.90 0.38 8.88
11~20 Min. 20.72 3.40 2.97 27.09
21~60 Min. 3.73 1.07 0.27 5.07
2~4 hours 13.23 0.67 0.68 14.57
5~8 hours 18.43 0.15 0.16 18.74
> 9 hours 10.73 8.27 1.10 20.11

Total Jobs 79.27 15.03 5.70 100

In the above workload characterization, the analysis 
revealed important job characteristics, such as that jobs 
arrival rate does not follow any trend and heterogeneity in 
both job size and requirements. Such heterogeneity in 
workloads dictates to analyze the effect of various 
scheduling policies in such scenarios. 

IV. EXPERIMENTAL SETUP

This section presents the experimental setup regarding 
the set of scheduling policies. All of the policies are used to 
schedule the aforementioned workload to figure out the best 
job scheduling policies for optimizing the system 
performance. 

A. Job scheduling policies 
The scheduler is a major component for managing the 

resources of large-scale parallel environments. A policy in a
scheduler is used to assign jobs to resources in specific time 
intervals such that the capacity of resources should meet 
jobs’ needs [10]. Suppose  �  denotes the total number of 
machines, �� (� = 1, … , �)  to process �  jobs  �� (	 =

1, … , �). A job   ��  is a program submitted by a user at a 
specific time interval (submit-time). Each job contains one or 
more tasks  �� = 
�(� = 1, … , �) , with each of these tasks 
being executed on a separate CPU for a given time period. A 
complete scheduling process schedules the job and allocates 
one or more time intervals of one or more machines as 
shown in Fig. 4. The corresponding scheduling policy 
problem is to find an optimal schedule process subject to 
various constraints. 

Schedulers achieve the scheduling process by using 
either a static or a dynamic scheduling method. In the static
case, the set of jobs are known a-priori, while the dynamic
one performs scheduling at job arrival. Due to the fact that 
jobs’ arrival rate and the status of some nodes (off-line or 
online) may change without any a-priori knowledge, the 
dynamic scheduling method is required [15].

Moreover, the scheduling process is categorized into
two groups: (a) batch mode and (b) online mode scheduling.
In an online mode, the job is scheduled on nodes 
immediately upon its arrival, while the batch mode 
schedulers collect the jobs in a queue until a condition is met.
A set of jobs considered for scheduling includes newly 
arrived jobs and the jobs that were unscheduled in the earlier 
scheduling events, called meta-tasks. The meta-tasks are 
examined by the corresponding scheduling policy at 
prescheduled times called scheduling events. The scheduler 
event can be defined through regular time interval such as 
every 10 seconds [15].

The batch scheduling method is successfully applied in 
large-scale parallel environments including banking system, 
health system, virtual campuses, and bio-informatics 
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Fig. 4 A Gantt chart for Job Scheduling process
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applications. However, the batch scheduling method and the 
independent nature of jobs is hard to be solved [15].

The set of schedulers examined in this work are based 
on either dynamic or static batch scheduling policies. In case 
of batch scheduling policy, the jobs are grouped in batches 
and executed irrespective of the dynamic environment.    

Similar to the aforementioned different scheduler 
properties, the scheduling process can be further considered
as a family of problems with respect to different job models. 
These job models directly affect the scheduling policies, 
which are inspired by the way the systems are managed and 
how the parallel applications are written [16]. In such a 
model, job flexibility is an advanced partitioning method 
supported by application (i.e., rigid, moldable, evolving, and 
malleable job flexibility). There is a differentiation between 
rigid and moldable/evolving/malleable jobs. In case of a 
rigid job, the number of processors that are assigned to a job 
does not change throughout the execution. On the other 
hand, in case of a moldable/evolving/malleable job the 
number of processors assigned to a job are subject to changes 
throughout the execution. Another model for schedulers is to 
support different level of preemption, such as preemption 
and non-preemption. In preemption level, the tasks or entire 
job can be preempted and migrated during the job execution 
(i.e., Gang scheduling). While in the non-preemption 
scheduling, the processors will be dedicated to the job 
throughout their execution after allocation. Preemption 
method may have great advantage in terms of system 
performance improvement, but it may incur extra overheads, 
such as the cost of memory due to migration and preemption 
[16]. Therefore, we consider non-preemptive scheduling 
process in our experiments. 

Considering the above scheduler properties, we simulate 
thirteen different scheduling policies. All of these policies 
are described below.  

FCFS is a simple and static job scheduling policy, where 
a job is served on arrival basis. In this policy, a job can 
create long delay for the next jobs when the ready processor 
does not meet the requirements of the job in question. Both 
LJF and SJF update the batch of jobs (i.e., meta-task) in 
decreasing and increasing order in terms of job’s size (i.e., 
job width), respectively. On the other hand, both MinET and 
MaxET perform the same operation in decreasing and 
increasing order in terms of job’s length, respectively [15].
FF is an additional technique to enhance the capability of the 
above five policies. FF policy finds a job in shared ordered 
queue list that can be fit on first idle resources such that the 
utilization of the resources is increased. 

A backfilling technique [17], [18] makes resource 
reservations for jobs, and then it backfills the jobs only if 
next jobs (i.e., Short jobs) do not violate the time reserved 
for previous jobs. There are two basic backfilling techniques: 
(a) aggressive and (b) conservative. The aggressive
technique makes a reservation only for the first job in the 
queue, while the second one makes reservations for all of the 
jobs contained in the shared queue. The aggressive

backfilling (known EAZY) was developed for IBM SP1 
parallel supercomputer, which is based on FCFS scheduling 
policy [17], [18]. In our work, we use the aggressive
technique because its performance is superior to the 
conservative one [18].

In K-reserved based policy, a waiting request has a 
counter containing K number of times that it has been 
overtaken by subsequent requests [19]. The K-reserved based 
policy works similarly with the aggressive backfilling 
technique with the difference being that the K-reserved based 
policy backfills only K numbers of jobs, while the aggressive 
technique does not have any limitation in terms of the jobs 
that are backfilled. Window-K policy enhances the FCFS 
policy for a window of consecutive jobs. The window starts 
with the oldest waiting job and contains up to K jobs that 
have arrived successively [19]. As in [19], we set K to 5 for 
the K-reserved based policy and 10 for the Window-K
policy. 

B. Simulation setup 
For the workloads simulation, we used a custom Java-

based discrete event simulator. Java provides full advantage 
of Object-Oriented Programming (OOP) technique [20]. A 
typical object-oriented software system implementation is 
centered on dynamic creation, manipulation, storing, and 
releasing of objects [21], [22]. The Java environment setup 
also allows database connectivity, where we stored all the 
datasets. We simulated all of the policies several times and
took to get accurate result for the experiments. We created an 
event-based setup, in which scheduler policies (Java 
programs) are invoked every 10 seconds. To approach the 
real setup, in each iteration the timestamps of the jobs 
belonging to the queue are updated according to the 
aforementioned interval of 10 seconds.  

V. ANALYZING AND COMPARING THE RESULTS

In this section, we analyze all of scheduling policies 
considered in this work. We evaluate their performance by 
measuring four metrics: (a) mean queue-time, (b) mean 
response-time, (c) mean slowdown, and (d) slowdown ratio. 
We must note that service providers are concerned with 
mean response-time and mean queue-time, while customers 
are concerned with mean slowdown and the slowdown ratio. 
Job’s queue-time represents the time elapsed from the arrival 
time of the respective job until the assignment of the 
corresponding job to the required nodes. Job’s response-time 
represents the time elapsed after the arrival of the respective 
job until its execution [25]. Equation 1 and 2 can be used to 
calculate the mean response-time and queue-time of the 
entire workload.

��
� ����� �	�� =  
∑ ���� (��������������������) 

�!��" #����� !$ %!��
 , (1) 

��
� &�'*+�'� �	�� =  
∑ ���� (�#-���������������)

�!��" #����� !$ %!��
 . (2) 

In the sequel, we give the definition of the rest metrics.
Mean slowdown is the normalized time of each job (i.e., job 
completion time divided by job running time), and 
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(a) (b)

Summary For Queue Time 

(c) 
 

Summary For Response Time

(d) (e) (f) 

Fig. 5 Comparison results of all policies with overall workloads: (a) Mean queue-time, (b) Mean response-time, (c) Box-Plot for queue-time of all jobs, (d)
Box-plot for response-time of all jobs, and (f) Mean slowdown.

slowdown ratio exhibits the normalized time of mean 
response-time [28] derived in Equation 3. 

./+02+0� &

	+ =
���� (���#_���3!#��)

���� (���#_�4�5���!#)
 ,  (3) 

Time (mean_response) and Time (mean_execution) indicate 
the mean response-time and mean running time of the entire 
workload. For example, if the mean response-time of a set of 
jobs is 10 hours and their mean execution-time on nodes is 5
hours, then the slowdown ratio will be 2 hours. The 
slowdown ratio is important for measuring the performance 
of the scheduling policy for the entire workload [25]. 

Fig. 5 shows the results regarding the above performance 
metrics for the entire workload: (a) mean queue-time, (b)
mean response-time, (c) queue time, and (d) response time 
for all jobs, (e) mean slowdown, and (f) slowdown ratio.  

We further compare the performance metrics in terms of 
job size correlations. To see how job characteristics affect 
the scheduling accuracy, we create four job observations 
based on the aforementioned job categories. Table VI shows 
their classification, such as short and narrow (SN),  long and 
narrow (LN), short and wide (SW), and long and wide (LW) 
jobs. The above four job observations are defined below with 
their results being shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9. 

  �+67�-�8 = 1 9:;   <>?  �+6"�#@�8   ≤  1 B+�C   (Ob.1) 

 �+67�-�8 = 1 9:;   <>?   �+6"�#@�8   >  1 B+�C   (Ob.2) 

 �+67�-�8  >  1 9:;   <>?   �+6"�#@�8   ≤   1 B+�C   (Ob.3) 

 �+67�-�8  >  1 9:;   <>?   �+6"�#@�8   >   1 B+�C   (Ob.4) 

TABLE VI. OBSERVATION TABLE FOR ENTIRE WORKLOADS (JOB’S
BREAKDOWNS FOR CORRELATION BETWEEN JOB’S WIDTH AND JOB’S

LENGTH)

Job size Short (S) Long (L) Total
<= 1 Hr > 1 Hr

Narrow (N) 1 CPU 36.88 42.39 79.27
Wide (W) > 1 CPU 9.70 11.03 20.73

Total 46.58 53.42 100.00

A. Discussion 
In conclusion, we explored the job characteristics before 

scheduling process. The important job characteristics are: (a)
the maximum percent of total jobs requesting single CPU for 
execution and (b) the percentage of jobs requesting even 
number of CPUs.  

Another remark in terms of job running time is that 
almost half of the total jobs execute within an hour (Short 
jobs), while the rest of them require more than an hour (Long 
jobs). Moreover, jobs’ arrival rate does not follow a uniform 
distribution. The above findings exhibit the workload 
heterogeneity that may affect various services offered by the 
system under consideration. Therefore, it is essential to 
compare and analyze different scheduling policies.   
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Fig. 6 Comparison results of all policies with overall workloads in first observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 
slowdown

(a) (b) (c) 

(a) (b)
 

(c) 
Fig. 7 Comparison results of all policies with overall workloads in second observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 

slowdown

 
(a) (b) (c) 

Fig. 8 Comparison results of all policies with overall workloads in third observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 
slowdown

 
(a) (b) (c) 

Fig. 9 Comparison results of all policies with overall workloads in fourth observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean 
slowdown
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Various job-scheduling policies are studied in this paper 
for large-scale parallel computational systems. Some job 
scheduling policies produce results with overheads. 
However, each policy possess various characteristics, such as 
FCFS produces better results with respect to fairness, but 
does not support resource fragmentation. If a job demands a 
large number of CPUs for execution and at that time period 
the system cannot serve the job due to unavailable CPUs, 
then the job waits in the queue and prevents the next job 
from being executed. The above happens even in the case 
that the requirements of the next job are met by the system. 
Consequently, the aforementioned case increases the job 
queue time as well as the response time.  

The results of FCFS policy in all of the figures in the 
previous section are not satisfactory in terms of job queue 
time and response time metrics. A solution of the processors 
fragmentation problem is introduced in backfilling technique 
(i.e., conservative and aggressive [17], [18]) with addition to 
maintain the fairness situation. However, taking into account 
the introduced job characteristics, other job scheduling 
policies may become superior to FCFS. For instance, with 
respect to the job size (i.e., job’s width), LJF results in better 
solutions for Wide jobs, while SJF exhibits better results in 
terms of Narrow jobs. Similarly, according to job running 
time (i.e., job’s length), MaxET and MinET policies are well 
suited for Long jobs and Short jobs, respectively.  

The scheduling policies are evaluated under three 
different classes. These classes distinguish the scheduling 
policies into three different sets of policies, such as Class-I, 
Class-II, and Class-III. The sets of the scheduling policies 
are explained below.  
Class-I includes four policies: MinET, SJF, as well as these 
policies combined with FF technique. In Class-II, FF 
technique is combined with FCFS, LJF, and MaxET. In the 
same class we also include the aggressive backfilling 
(EAZY) and K-reserved based (Max_Pri) policies. Finally, 
Class-III consists of four policies: FCFS, LJF, MaxET, and 
Window-K policies.  

We found that the policies in Class-I produce better 
results as compared to the policies in Class-II and Class-III. 
The policies in Class-II are superior to the policies in Class-
III.     

The major reason that SJF policy is superior to the rest 
policies in all the figures is due to the fact a large number of 
Narrow jobs. Alternatively, for the MinET and MaxET 
policies, we have already highlighted that (a) MinET and 
MaxET take into account user’s estimated running time, and 
(b) half of the jobs are Long and the rest are Short. Because 
of the aforementioned factors, we would expect that MinET 
and MaxET produce almost the same results. However, the 
results shown in Fig. 5 reveal that the aforementioned does 
not hold. This is explained by the fact that the number of 
Narrow jobs is quite larger than that of Wide jobs. Because 
MinET and MinET-FF take into account the above fact, it 
results in better solutions against MaxET and MaxET-FF.  

 In Fig. 6 and Fig. 7, we present the results for Narrow 
jobs. The number of jobs is 36% in Fig. 6 and 42% in Fig. 8 
of the total jobs in the overall workload. In Fig. 6, the jobs 
belong to SN category, while in Fig. 7 the jobs belong to LN
category. In both figures, the scheduling policies of Class-I
dominate the policies belonging to other classes. 

The results for Wide jobs (i.e., SW and LW) are shown 
in Fig. 8 and Fig. 9, and their job percentage is 10% and 
11%, respectively. In Fig. 8, the scheduling policies of both 
Class-I and Class-II exhibit better results as compared to the 
policies in Class-III, while Fig. 9 shows that the results are 
almost the same for all of the scheduling policies.

In the above sections, we thoroughly discussed the 
characterization and analysis of the real data center workload 
and several job-scheduling policies. We investigated that 
most of the job scheduling policies are affected significantly 
by certain workload characteristics. 

VI. CONCLUSION

To enhance the performance of the cloud data centers, 
job scheduling and resource allocation techniques are needed 
to maintain various levels of QoS. We studied a set of job 
scheduling policies, and characterized real data center 
workload for optimizing system’s performance. A total of 
thirteen job scheduling policies were studied to analyze and 
compare the results. The set of job scheduling policies 
considered in this work includes (a) priority-based policies, 
(b) tuning policy, (c) backfilling techniques, and (d)
window-based technique. We used four metrics (mean queue
time, mean response time, mean slowdown, and slowdown 
ratio) to evaluate the performance of the job scheduling 
policies. All of the policies were extensively simulated and 
compared using a real data center workload. The workload 
exhibited a wide range of job heterogeneity. We first 
characterized the workload and unveiled different job 
characteristics, such as that (a) the jobs of the system 
demand either single CPU or even number of CPUs for 
execution, and (b) 47% and 53% of jobs are executed within 
an hour and more than an hour, respectively. Moreover, we
examined and analyzed the results of different job scheduling 
policies. Specifically, we observed that MinET and SJF 
when combined with FF technique exhibit better results as 
compared to the other policies.  

Our analysis revealed that a single policy is not 
sufficient for resource management in parallel computational 
environments. Such environments need to implement 
dynamic and adaptive scheduling policies. In future work, 
we will investigate configuration-based policies to balance 
the scheduling policies for non-uniform workloads, as well 
as energy-ware policies. 
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