
A Comparative Study of Job Scheduling Strategies in
Large-scale Parallel Computational Systems

Aftab Ahmed Chandio1,3, Cheng-Zhong Xu1,2, Nikos Tziritas1

1Shenzhen Institutes of Advanced Technology
Chinese Academy of Sciences, Shenzhen, China

2Wayne State University, Detroit, USA
3University of Sindh, Jamshoro, Pakistan

{aftabac, cz.xu, nikolaos}@siat.ac.cn

Kashif Bilal and Samee U. Khan
Department of Electrical and Computer Engineering, North

Dakota State University, Fargo, USA
{kashif.bilal, same.khan}@ndsu.edu

Abstract—With the advent of High Performance Computing
(HPC) in the large-scale parallel computational environment,
job scheduling and resource allocation techniques are required
to deliver the Quality of Service (QoS) and resource
management. Therefore, job scheduling on a large-scale
parallel system has been studied to: (a) minimize the queue
time and response time, and (b) maximize the overall system
utilization. We compare and analyze thirteen job scheduling
policies to analyze their behavior. The set of job scheduling
policies include: (a) priority-based policies, (b) first fit, (c)
backfilling techniques, and (d) window-based policies. All of
the policies are extensively simulated and compared. A real
data center workload comprised of 22385 jobs is used for
simulation. We analyze the: (a) queue time, (b) response time,
and (c) slowdown ratio to evaluate the policies. Moreover, we
present a comprehensive workload characterization that can
be used as a tool for optimizing system’s performance and for
scheduler design. We investigate four categories of the
workload characteristics including: (a) Narrow, (b) Wide, (c)
Short, and (d) Long for detailed analysis of the schedulers’
performance. This study highlights the strengths and weakness
of various job scheduling polices and helps to choose an
appropriate job scheduling policy in a given scenario.

Keywords- Large-scale Parallel Computational Systems; Job
Scheduling; Workload Characterization; Data center;

I. INTRODUCTION

Scientific organizations are increasingly adopting high
performance computing (HPC) for solving large problems,
which increases the computational and storage needs. In the
last decade, various scientific organizations have spent ample
budget to carry out research projects using supercomputers
[1]. Because of the fact that supercomputers are unaffordable
for various organizations, they were forced to choose low-
budget solutions. Consequently, cloud environment emerged
as an alternate to provide the facility of large-scale parallel
computations. Currently, many cloud Resource Providers
(RPs) offer thousands of computational nodes and variety of
services to facilitate end-users.

In the large-scale parallel computational environments,
the end-users submit their requests unaware of the resource
allocation. Unusually, these requests are complex jobs,
which may be computation-intensive (i.e., job demands

more CPU time) or data-intensive (i.e., job demands more
storage space and communication). Moreover, these requests
may require different levels of Quality of Service (QoS),
including job turnaround time and queue time. Furthermore,
the large-scale parallel computational environments consist
of (a) the mixture of applications and (b) a pool of finite
resources meeting the demands of end-users.

For the above identified factors, RPs pay considerable
attention to resource management to deliver the required
QoS and enhance system utilization. Several researchers
focus on resource management to optimize the system
performance considering various QoS constraints. The job
scheduling policy is one of the major components of
resource management system for solving the above problems
in such environments. A scheduling process involves
assigning resources to jobs such that no other jobs access the
resources at the same time interval [10]. However, due to
dynamic nature of the workload, the scheduling problem is
hard to solve, and an active research direction for resource
management. The scheduling policy should behave equally
well considering the resource heterogeneity and the
workload variability.

Considering the aforementioned issues, the contribution
of this paper is two-fold: (a) comprehensive characterization
of real world workloads, and (b) comparison and analysis of
a set of scheduling policies to evaluate system’s
performance. The analysis of job scheduling policies will
help to select an appropriate job scheduling policy for a
given scenario. Additionally, this paper presents an
investigation that how workload characteristics affect job-
scheduling performance. Collecting log files from a real
production system is a common approach to estimate the
future workloads [11]. Therefore, we collected a real data
center workload for the experimental evaluation to simulate
and analyze the policies considered in this paper. As the
workload characterization is a major factor for evaluation of
the system performance [12], we present a comprehensive
characterization. The study of workload characterization
motivates to interpret the difference between jobs’
computation time, and identify the similar and repeatable
workload trends.

2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-5022-0/13 $26.00 © 2013 IEEE

DOI 10.1109/TrustCom.2013.116

949

We examine thirteen job-scheduling policies: five
priority-based policies, one tuning policy, one window-based
policy, and two backfilling techniques. The priority-based
scheduling policies are: (a) First Come First Serve (FCFS),
(b) Smallest Job First (SJF), (c) Largest Job First (LJF), (d)
Minimum estimated Execution Time (MinET), and (e)
Maximum estimated Execution Time (MaxET). The
aforementioned priority-based scheduling policies are tuned
by applying the First Fit (FF) technique.

Moreover, we use a window based scheduling policy
called Window-K. Furthermore, we consider two backfilling
techniques namely: (a) Aggressive Backfilling and (b) K-
reserved based technique. Both backfilling techniques work
in conjunction with the FCFS policy.

We simulate all of these scheduling policies with real
data center workload. In all of the studied scheduling
policies, the assumptions and job parameters (i.e., number of
jobs, tasks in each job, estimated time of job execution, and
submission time of each job) remain same to maintain a fair
comparison. The aforementioned policies are analyzed by
numerous results wherein we split the workload to create
multiple datasets. This assumption allows determining,
which job scheduling policy produces better results under
different datasets. We use four class-based job observations
for detailed analysis and comparison of scheduler
performance. We performed detailed analysis and observed
interesting findings, such as: (a) MinET and SJF when
combined with FF technique exhibit better performance
compared to other policies, and (b) a large number of small
jobs in the workload can stop the MaxET policy for
producing at least same results compared to MinET policy
with certain job characteristics.

The rest of the paper is organized as follows. Section II
states the related work, followed by the comprehensive
characterization and analysis of data center workload in
Section III. Section IV presents the simulation results of the
real data center workload using several well-known job-
scheduling policies. Performance analysis and comparison
analysis is detailed in Section V. Finally, Section VI
concludes the paper and highlights future research directions.

II. RELATED WORK

In large-scale parallel computational environment, RP
offers dynamic and geographically distributed access to
computational and storage resources. Moreover, RP aims to
efficiently utilize the finite resources to a vast number of
users, and to maintain the different QoS levels [2]. The
resource management problem can be handled by selecting
an appropriate job scheduling technique for performance
optimization. A vast body of research such as [3] - [9] has
focused on resource management through scheduling
techniques to address the problem of resource allocation
under the different QoS constraints. For instance, author in
[3] propose metric-aware scheduling, which enables the
scheduler to balance competing scheduling goals represented
by different metrics, such as job waiting time, fairness, and

system utilization. Khan used a self-adaptive weighted sum
technique in [4], [5], game theoretical methodologies in [6],
and goal programming approach in [7] to optimize the
system performance for grid resource allocation under
different QoS constraints. Tracy et al. [8] studied eleven
static heuristics for mapping a class of independent task onto
heterogeneous distributed computing system. The authors
analyzed and implemented a collection of task mapping
policies under one set of common assumptions. The author
in [9] compared the performance of six online scheduling
algorithms for batch jobs by simulating keeping in
consideration the three objective functions including
makespan, average flowtime, and maximum wait-time. This
paper addresses the similar problem of system performance
through a comparative study of job scheduling strategies.

Additionally, these environments respond to large
number of users with pay-per-use and pay-as-you-go
methods, and execute several jobs in parallel. These jobs
require long execution times and are considered
computation-intensive. The expected workloads for large-
scale parallel computational environments consist of a
mixture of applications that demand different resources,
which result in highly variable workloads [13]. Feitelson et
al. [23] described parallel workload models in detail, and
explained standard workload format for large-scale parallel
computing environments. The author used publically
available parallel workloads from [24] that consist of
various real world workloads obtained from several large-
scale parallel computers. These workloads have been
characterized and analyzed in [26], [27], and observed
similarities and differences in workload characteristics, such
as different arrival patterns in peak or non-peak intervals
and “power-of-two” number of processor requirement for
job execution. Workload characterization is considered a
useful approach for system design. Therefore, we examine
and characterize the workloads in different perspectives to
find out similarities and differences that can be used as a
tool for system’s performance optimization.

In the state-of-the-art, various authors used publically
available workloads to analyze scheduler performance. Most
of the authors make certain assumptions about the nature of
jobs to present a specific real system for their experiments.
In contrast, we have collected the log files from a real data
center for an evaluation that is closer to real scenarios.
Moreover, we study a set of scheduling policies to analyze
and compare simulation results, highlighting their
performance.

III. CHARATERIZATION OF DATA CENTER WORKLOAD

The system performance is evaluated considering the
characteristics of hardware and software components, as well
as the workload it processes [12]. Workload characterization
helps in understanding overall behavior of the system
highlighting, job arrival rate, job size, and job length. Major
challenges include: (a) how to manage the system for
different loads, (b) how to utilize the resources efficiently,

950

(c) how to meet user demands, and (d) how to minimize the
Total Cost of Ownership (TCO). Aforementioned questions
mandate the RPs to select appropriate resource management
techniques, such as job scheduling policies (see Section
IV.A).

A. Workload’s information
We characterized a real data center workload from the

Center for Computational Research (CCR) of State
University of New York at Buffalo to evaluate the system
performance. The data center is a collection of multiple
computational resources clustered together using
communication infrastructure, which fall into two categories:
(a) homogeneous and (b) heterogeneous resources. The
resources in homogeneous systems are similar in terms of
size and capacity, in which a job executes in similar capacity,
whereas the resources in heterogeneous system are organized
with different specification.

The workloads were collected during 30 days’ time
period from 20 February 2009 to 22 March 2009. A total of
22385 jobs were executed on more than 1000 dual processor
nodes [29], [30]. A complete specification of the data center
is presented in Table I.

TABLE I. FULL SPECIFICATION OF DATA CENTER

Time Duration 20 Feb. 2009 to 22 Mar. 2009
Total Jobs ran out on DC 22385
Total Distinct Nodes 1045
Processor name 1056 Dell PowerEdge SC1425 nodes
Processor Speed 3.0GHz or 3.2GHz
OS x86 64 Linux
Peak performance 13 TFlop/s

B. Job’s information
A job is generated by a user and submitted to the system.

The system in turn, according to its scheduling policy,
allocates a number of processors meeting the demands of the
job in question. In this section, we characterize jobs
according to different perspectives, such as job arrival rate
and job size. Fig. 1 shows the total number of jobs arrived
per hour in 30-day cycle. From this figure we can make two

observations: (a) there are fluctuations in the job arrival rate
per hour, (b) the system experiences high job arrival rates in
specific time intervals, and (c) job arrival rate does not
follow a uniform distribution at hourly cycle.

In terms of the job size we make the following
observations. The job size can be well explained in a 2D
chart, with y axis representing the number of processors
while x axis representing the execution time (see Section
IV.A) [14]. Therefore, we distribute the job size according
to: (i) job’s width representing the number of CPUs required
by the job in question and (ii) job’s length representing the
execution time of the respective job. The above perspectives
are further classified into four categories: (a) Narrow, (b)
Wide, (c) Short, and (d) Long. Specifically, regarding (i) a
job requests either a single CPU (Narrow category) or an
even number of CPUs (Wide category). On the other
extreme (job’s length), a job is executed within either an
hour (Short category) or more than an hour (Long category).
The above categories are classified based on the
aforementioned workloads. Fig. 2 shows the job distribution
according to their width (CPU requirement). Our analysis
revealed that the jobs demand either single CPU (i.e.,
Narrow jobs) or even number of CPUs (i.e., Wide jobs). It is
worth mentioning that the number of Narrow jobs is
dominant, i.e., 79% percent of the total jobs, whereas, 21%
of the total jobs are in Wide category.

The job length exhibits the time length of the job being
executed. We observed in Table II that almost 50% of the
total jobs belong to Short category. Consequently, the rest of
them belong to Long category.

TABLE II. BREAKDOWN DISTRIBUTION FOR JOB LENGTH

Job length No. of jobs % of jobs
< 1 hour (Short) 10428 46.58
> 1 hour (Long) 11957 53.42

Total 22385 100

Table III and IV present the classification of the jobs in

(a) Short and (b) Long categories. It can be observed that
most of the Short jobs (around 86%) are executed within 18
minutes, while around 66.6% of the long jobs are executed
within 12 hours.

Fig. 1 Jobs arriving per hour Fig. 2: Jobs breakdown according to number of CPUs

951

TABLE III. BREAKDOWN DISTRIBUTION OF THE SHORT JOBS

Job length No. of jobs % of jobs
1 Min. 1239 5.53
2~5 Min. 504 2.25
6~10 Min. 1485 6.63
11~15 Min. 1858 8.30
16 Min. 1166 5.21
17 Min. 1777 7.94
18 Min. 968 4.32
18~59 Min. 1431 6.39
Total 10428 46.58

TABLE IV. BREAKDOWN DISTRIBUTION OF THE LONG JOBS

Job length No. of jobs % of jobs
1~1.5 hours 1368 6.11
1.5~2 hours 1339 5.98
2~6 hours 1210 5.41
7 hours 1754 7.84
8 hours 1785 7.97
8~12 hours 511 2.28
12~15 hours 667 2.98
16 hours 1408 6.29
16~18 hours 447 2.00
18~24 hours 595 2.66
24~48 hours 511 2.28
>48 hours 362 1.62
Total 11957 53.42

We also analyzed the job size to address the correlation
between both job width and job length, shown in Table V.
The correlation table reveals that Narrow jobs dominate all
of the categories. Moreover, Short jobs with execution time
between 11 to 20 minutes and Long jobs with execution time
more than 11 hours are also prevailing.

TABLE V. PERCENTAGE BREAKDOWN FOR CORRELATION BETWEEN
JOBS WIDTH AND LENGTH

Job Size
Job Width

1 CPU 2~24 CPUs > 32 CPUs Total jobs

Jo
b

Le
ng

th

< 1 Min. 4.83 0.58 0.13 5.55
2~10 Min. 7.60 0.90 0.38 8.88
11~20 Min. 20.72 3.40 2.97 27.09
21~60 Min. 3.73 1.07 0.27 5.07
2~4 hours 13.23 0.67 0.68 14.57
5~8 hours 18.43 0.15 0.16 18.74
> 9 hours 10.73 8.27 1.10 20.11

Total Jobs 79.27 15.03 5.70 100

In the above workload characterization, the analysis
revealed important job characteristics, such as that jobs
arrival rate does not follow any trend and heterogeneity in
both job size and requirements. Such heterogeneity in
workloads dictates to analyze the effect of various
scheduling policies in such scenarios.

IV. EXPERIMENTAL SETUP

This section presents the experimental setup regarding
the set of scheduling policies. All of the policies are used to
schedule the aforementioned workload to figure out the best
job scheduling policies for optimizing the system
performance.

A. Job scheduling policies
The scheduler is a major component for managing the

resources of large-scale parallel environments. A policy in a
scheduler is used to assign jobs to resources in specific time
intervals such that the capacity of resources should meet
jobs’ needs [10]. Suppose � denotes the total number of
machines, �� (� = 1, … , �) to process � jobs �� (=

1, … , �). A job �� is a program submitted by a user at a
specific time interval (submit-time). Each job contains one or
more tasks �� =
�(� = 1, … , �) , with each of these tasks
being executed on a separate CPU for a given time period. A
complete scheduling process schedules the job and allocates
one or more time intervals of one or more machines as
shown in Fig. 4. The corresponding scheduling policy
problem is to find an optimal schedule process subject to
various constraints.

Schedulers achieve the scheduling process by using
either a static or a dynamic scheduling method. In the static
case, the set of jobs are known a-priori, while the dynamic
one performs scheduling at job arrival. Due to the fact that
jobs’ arrival rate and the status of some nodes (off-line or
online) may change without any a-priori knowledge, the
dynamic scheduling method is required [15].

Moreover, the scheduling process is categorized into
two groups: (a) batch mode and (b) online mode scheduling.
In an online mode, the job is scheduled on nodes
immediately upon its arrival, while the batch mode
schedulers collect the jobs in a queue until a condition is met.
A set of jobs considered for scheduling includes newly
arrived jobs and the jobs that were unscheduled in the earlier
scheduling events, called meta-tasks. The meta-tasks are
examined by the corresponding scheduling policy at
prescheduled times called scheduling events. The scheduler
event can be defined through regular time interval such as
every 10 seconds [15].

The batch scheduling method is successfully applied in
large-scale parallel environments including banking system,
health system, virtual campuses, and bio-informatics

M
5

M
4

M
3

M
2

M
1

T

J
3

J
1

J
5

J
4

J
1

J
2

Fig. 4 A Gantt chart for Job Scheduling process

952

applications. However, the batch scheduling method and the
independent nature of jobs is hard to be solved [15].

The set of schedulers examined in this work are based
on either dynamic or static batch scheduling policies. In case
of batch scheduling policy, the jobs are grouped in batches
and executed irrespective of the dynamic environment.

Similar to the aforementioned different scheduler
properties, the scheduling process can be further considered
as a family of problems with respect to different job models.
These job models directly affect the scheduling policies,
which are inspired by the way the systems are managed and
how the parallel applications are written [16]. In such a
model, job flexibility is an advanced partitioning method
supported by application (i.e., rigid, moldable, evolving, and
malleable job flexibility). There is a differentiation between
rigid and moldable/evolving/malleable jobs. In case of a
rigid job, the number of processors that are assigned to a job
does not change throughout the execution. On the other
hand, in case of a moldable/evolving/malleable job the
number of processors assigned to a job are subject to changes
throughout the execution. Another model for schedulers is to
support different level of preemption, such as preemption
and non-preemption. In preemption level, the tasks or entire
job can be preempted and migrated during the job execution
(i.e., Gang scheduling). While in the non-preemption
scheduling, the processors will be dedicated to the job
throughout their execution after allocation. Preemption
method may have great advantage in terms of system
performance improvement, but it may incur extra overheads,
such as the cost of memory due to migration and preemption
[16]. Therefore, we consider non-preemptive scheduling
process in our experiments.

Considering the above scheduler properties, we simulate
thirteen different scheduling policies. All of these policies
are described below.

FCFS is a simple and static job scheduling policy, where
a job is served on arrival basis. In this policy, a job can
create long delay for the next jobs when the ready processor
does not meet the requirements of the job in question. Both
LJF and SJF update the batch of jobs (i.e., meta-task) in
decreasing and increasing order in terms of job’s size (i.e.,
job width), respectively. On the other hand, both MinET and
MaxET perform the same operation in decreasing and
increasing order in terms of job’s length, respectively [15].
FF is an additional technique to enhance the capability of the
above five policies. FF policy finds a job in shared ordered
queue list that can be fit on first idle resources such that the
utilization of the resources is increased.

A backfilling technique [17], [18] makes resource
reservations for jobs, and then it backfills the jobs only if
next jobs (i.e., Short jobs) do not violate the time reserved
for previous jobs. There are two basic backfilling techniques:
(a) aggressive and (b) conservative. The aggressive
technique makes a reservation only for the first job in the
queue, while the second one makes reservations for all of the
jobs contained in the shared queue. The aggressive

backfilling (known EAZY) was developed for IBM SP1
parallel supercomputer, which is based on FCFS scheduling
policy [17], [18]. In our work, we use the aggressive
technique because its performance is superior to the
conservative one [18].

In K-reserved based policy, a waiting request has a
counter containing K number of times that it has been
overtaken by subsequent requests [19]. The K-reserved based
policy works similarly with the aggressive backfilling
technique with the difference being that the K-reserved based
policy backfills only K numbers of jobs, while the aggressive
technique does not have any limitation in terms of the jobs
that are backfilled. Window-K policy enhances the FCFS
policy for a window of consecutive jobs. The window starts
with the oldest waiting job and contains up to K jobs that
have arrived successively [19]. As in [19], we set K to 5 for
the K-reserved based policy and 10 for the Window-K
policy.

B. Simulation setup
For the workloads simulation, we used a custom Java-

based discrete event simulator. Java provides full advantage
of Object-Oriented Programming (OOP) technique [20]. A
typical object-oriented software system implementation is
centered on dynamic creation, manipulation, storing, and
releasing of objects [21], [22]. The Java environment setup
also allows database connectivity, where we stored all the
datasets. We simulated all of the policies several times and
took to get accurate result for the experiments. We created an
event-based setup, in which scheduler policies (Java
programs) are invoked every 10 seconds. To approach the
real setup, in each iteration the timestamps of the jobs
belonging to the queue are updated according to the
aforementioned interval of 10 seconds.

V. ANALYZING AND COMPARING THE RESULTS

In this section, we analyze all of scheduling policies
considered in this work. We evaluate their performance by
measuring four metrics: (a) mean queue-time, (b) mean
response-time, (c) mean slowdown, and (d) slowdown ratio.
We must note that service providers are concerned with
mean response-time and mean queue-time, while customers
are concerned with mean slowdown and the slowdown ratio.
Job’s queue-time represents the time elapsed from the arrival
time of the respective job until the assignment of the
corresponding job to the required nodes. Job’s response-time
represents the time elapsed after the arrival of the respective
job until its execution [25]. Equation 1 and 2 can be used to
calculate the mean response-time and queue-time of the
entire workload.

��
� ����� �	�� =
∑ ���� (��������������������)

�!��" #����� !$ %!��
 , (1)

��
� &�'*+�'� �	�� =
∑ ���� (�#-���������������)

�!��" #����� !$ %!��
 . (2)

In the sequel, we give the definition of the rest metrics.
Mean slowdown is the normalized time of each job (i.e., job
completion time divided by job running time), and

953

(a) (b)

Summary For Queue Time

(c)

Summary For Response Time

(d) (e) (f)

Fig. 5 Comparison results of all policies with overall workloads: (a) Mean queue-time, (b) Mean response-time, (c) Box-Plot for queue-time of all jobs, (d)
Box-plot for response-time of all jobs, and (f) Mean slowdown.

slowdown ratio exhibits the normalized time of mean
response-time [28] derived in Equation 3.

./+02+0� &

	+ =
���� (���#_���3!#��)

���� (���#_�4�5���!#)
 , (3)

Time (mean_response) and Time (mean_execution) indicate
the mean response-time and mean running time of the entire
workload. For example, if the mean response-time of a set of
jobs is 10 hours and their mean execution-time on nodes is 5
hours, then the slowdown ratio will be 2 hours. The
slowdown ratio is important for measuring the performance
of the scheduling policy for the entire workload [25].

Fig. 5 shows the results regarding the above performance
metrics for the entire workload: (a) mean queue-time, (b)
mean response-time, (c) queue time, and (d) response time
for all jobs, (e) mean slowdown, and (f) slowdown ratio.

We further compare the performance metrics in terms of
job size correlations. To see how job characteristics affect
the scheduling accuracy, we create four job observations
based on the aforementioned job categories. Table VI shows
their classification, such as short and narrow (SN), long and
narrow (LN), short and wide (SW), and long and wide (LW)
jobs. The above four job observations are defined below with
their results being shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

 �+67�-�8 = 1 9:; <>? �+6"�#@�8 ≤ 1 B+�C (Ob.1)

 �+67�-�8 = 1 9:; <>? �+6"�#@�8 > 1 B+�C (Ob.2)

 �+67�-�8 > 1 9:; <>? �+6"�#@�8 ≤ 1 B+�C (Ob.3)

 �+67�-�8 > 1 9:; <>? �+6"�#@�8 > 1 B+�C (Ob.4)

TABLE VI. OBSERVATION TABLE FOR ENTIRE WORKLOADS (JOB’S
BREAKDOWNS FOR CORRELATION BETWEEN JOB’S WIDTH AND JOB’S

LENGTH)

Job size Short (S) Long (L) Total
<= 1 Hr > 1 Hr

Narrow (N) 1 CPU 36.88 42.39 79.27
Wide (W) > 1 CPU 9.70 11.03 20.73

Total 46.58 53.42 100.00

A. Discussion
In conclusion, we explored the job characteristics before

scheduling process. The important job characteristics are: (a)
the maximum percent of total jobs requesting single CPU for
execution and (b) the percentage of jobs requesting even
number of CPUs.

Another remark in terms of job running time is that
almost half of the total jobs execute within an hour (Short
jobs), while the rest of them require more than an hour (Long
jobs). Moreover, jobs’ arrival rate does not follow a uniform
distribution. The above findings exhibit the workload
heterogeneity that may affect various services offered by the
system under consideration. Therefore, it is essential to
compare and analyze different scheduling policies.

954

Fig. 6 Comparison results of all policies with overall workloads in first observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean
slowdown

(a) (b) (c)

(a) (b)

(c)
Fig. 7 Comparison results of all policies with overall workloads in second observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean

slowdown

(a) (b) (c)

Fig. 8 Comparison results of all policies with overall workloads in third observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean
slowdown

(a) (b) (c)

Fig. 9 Comparison results of all policies with overall workloads in fourth observation: (a) Mean queue-time, (b) Mean response-time, and (c) Mean
slowdown

955

Various job-scheduling policies are studied in this paper
for large-scale parallel computational systems. Some job
scheduling policies produce results with overheads.
However, each policy possess various characteristics, such as
FCFS produces better results with respect to fairness, but
does not support resource fragmentation. If a job demands a
large number of CPUs for execution and at that time period
the system cannot serve the job due to unavailable CPUs,
then the job waits in the queue and prevents the next job
from being executed. The above happens even in the case
that the requirements of the next job are met by the system.
Consequently, the aforementioned case increases the job
queue time as well as the response time.

The results of FCFS policy in all of the figures in the
previous section are not satisfactory in terms of job queue
time and response time metrics. A solution of the processors
fragmentation problem is introduced in backfilling technique
(i.e., conservative and aggressive [17], [18]) with addition to
maintain the fairness situation. However, taking into account
the introduced job characteristics, other job scheduling
policies may become superior to FCFS. For instance, with
respect to the job size (i.e., job’s width), LJF results in better
solutions for Wide jobs, while SJF exhibits better results in
terms of Narrow jobs. Similarly, according to job running
time (i.e., job’s length), MaxET and MinET policies are well
suited for Long jobs and Short jobs, respectively.

The scheduling policies are evaluated under three
different classes. These classes distinguish the scheduling
policies into three different sets of policies, such as Class-I,
Class-II, and Class-III. The sets of the scheduling policies
are explained below.
Class-I includes four policies: MinET, SJF, as well as these
policies combined with FF technique. In Class-II, FF
technique is combined with FCFS, LJF, and MaxET. In the
same class we also include the aggressive backfilling
(EAZY) and K-reserved based (Max_Pri) policies. Finally,
Class-III consists of four policies: FCFS, LJF, MaxET, and
Window-K policies.

We found that the policies in Class-I produce better
results as compared to the policies in Class-II and Class-III.
The policies in Class-II are superior to the policies in Class-
III.

The major reason that SJF policy is superior to the rest
policies in all the figures is due to the fact a large number of
Narrow jobs. Alternatively, for the MinET and MaxET
policies, we have already highlighted that (a) MinET and
MaxET take into account user’s estimated running time, and
(b) half of the jobs are Long and the rest are Short. Because
of the aforementioned factors, we would expect that MinET
and MaxET produce almost the same results. However, the
results shown in Fig. 5 reveal that the aforementioned does
not hold. This is explained by the fact that the number of
Narrow jobs is quite larger than that of Wide jobs. Because
MinET and MinET-FF take into account the above fact, it
results in better solutions against MaxET and MaxET-FF.

 In Fig. 6 and Fig. 7, we present the results for Narrow
jobs. The number of jobs is 36% in Fig. 6 and 42% in Fig. 8
of the total jobs in the overall workload. In Fig. 6, the jobs
belong to SN category, while in Fig. 7 the jobs belong to LN
category. In both figures, the scheduling policies of Class-I
dominate the policies belonging to other classes.

The results for Wide jobs (i.e., SW and LW) are shown
in Fig. 8 and Fig. 9, and their job percentage is 10% and
11%, respectively. In Fig. 8, the scheduling policies of both
Class-I and Class-II exhibit better results as compared to the
policies in Class-III, while Fig. 9 shows that the results are
almost the same for all of the scheduling policies.

In the above sections, we thoroughly discussed the
characterization and analysis of the real data center workload
and several job-scheduling policies. We investigated that
most of the job scheduling policies are affected significantly
by certain workload characteristics.

VI. CONCLUSION

To enhance the performance of the cloud data centers,
job scheduling and resource allocation techniques are needed
to maintain various levels of QoS. We studied a set of job
scheduling policies, and characterized real data center
workload for optimizing system’s performance. A total of
thirteen job scheduling policies were studied to analyze and
compare the results. The set of job scheduling policies
considered in this work includes (a) priority-based policies,
(b) tuning policy, (c) backfilling techniques, and (d)
window-based technique. We used four metrics (mean queue
time, mean response time, mean slowdown, and slowdown
ratio) to evaluate the performance of the job scheduling
policies. All of the policies were extensively simulated and
compared using a real data center workload. The workload
exhibited a wide range of job heterogeneity. We first
characterized the workload and unveiled different job
characteristics, such as that (a) the jobs of the system
demand either single CPU or even number of CPUs for
execution, and (b) 47% and 53% of jobs are executed within
an hour and more than an hour, respectively. Moreover, we
examined and analyzed the results of different job scheduling
policies. Specifically, we observed that MinET and SJF
when combined with FF technique exhibit better results as
compared to the other policies.

Our analysis revealed that a single policy is not
sufficient for resource management in parallel computational
environments. Such environments need to implement
dynamic and adaptive scheduling policies. In future work,
we will investigate configuration-based policies to balance
the scheduling policies for non-uniform workloads, as well
as energy-ware policies.

ACKNOWLEDGMENTS

This work is funded in part by the grant of the National
Natural Science Foundation of China (No. 61202417),
the public technology service platform for Cloud computing
inspection, detection and application standardization, the

956

implementation and technical service of security guard
system for Cloud computing, the national development, and
the reform commission PRC.

Aftab Ahmed Chandio’s work was partly supported for
his PhD studies in Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen,
China. Nikos Tziritas’s work is partly supported by Chinese
Academy of Sciences. Samee U. Khan's work was partly
supported by the Young International Scientist Fellowship of
the Chinese Academy of Sciences, (Grant No.
2011Y2GA01).

REFERENCES

[1] Iosup.A., Ostermann.S., Yigitbasi.M.N., Prodan.R., Fahringer. T.,
Epema. D.H.J., “Performance Analysis of Cloud Computing Services
Many-Task s Scientific Computing”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 22, Issue: 6 , 2011 , pp. 931 – 945.

[2] Xu, C. Z., Rao, J., and Bu, X. “URL: A unified reinforcement
learning approach for autonomic cloud management”. Journal of
Parallel and Distributed Computing, 72(2), 2012, pp. 95-105.

[3] Wei T., Dongxu R., Zhiling L., Narayan D., "Adaptive Metric-Aware
Job Scheduling for Production Supercomputers," 2012 41st
International Conference on Parallel Processing Workshops,
(ICPPW’12) pp. 107-115, 2012

[4] Khan S.U., "A Self-adaptive Weighted Sum Technique for the Joint
Optimization of Performance and Power Consumption in Data
Centers," in 22nd International Conference on Parallel and
Distributed Computing and Communication Systems (PDCCS),
Louisville, KY, USA, September 2009, pp. 13-18.

[5] Khan S.U., C. Ardil, "A Weighted Sum Technique for the Joint
Optimization of Performance and Power Consumption in Data
Centers," International Journal of Electrical, Computer, and Systems
Engineering, vol. 3, no. 1, pp. 35-40, 2009.

[6] Khan S.U., Ahmad, I., "Non-cooperative, semi-cooperative, and
cooperative games-based grid resource allocation," Parallel and
Distributed Processing Symposium, 2006. IPDPS 2006. 20th
International , vol., no., pp.10 pp., 25-29 April 2006

[7] Khan S.U., "A Goal Programming Approach for the Joint
Optimization of Energy Consumption and Response Time in
Computational Grids," in 28th IEEE International Performance
Computing and Communications Conference (IPCCC), Phoenix, AZ,
USA, December 2009, pp. 410-417.

[8] Tracy D. Braun, et. al., 2001. A comparison of eleven static heuristics
for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61, 6
(June 2001), 810-837

[9] Arndt, O., et al., A comparative study of online scheduling algorithms
for networks of workstations. Cluster Computing, 2000. 3(2): p. 95-
112

[10] Baraglia R., et al,. “A multi-criteria job scheduling framework for
large computing farms”, Journal of Computer and System Sciences,
ELSEVIER, 79, pp. 230–244 , 2013.

[11] Feitelson D.G., Tsafrir D., and Krakov D., “Experience with the
Parallel Workloads Archive”. Technical Report 2012-6, School of
Computer Science and Engineering, The Hebrew University of
Jerusalem, April 2012.

[12] Feitelson. D.G., “Workload modeling for performance evaluation”.
Workshop on Job Scheduling Strategies for Parallel Processing ,
Lecture Notes in Computer Science, 2459:114–141, 2002.

[13] Steven H., David S., and Timothy O', Donnell. “Analysis of the Early
Workload on the Cornell Theory Center IBM Sp2”, ACM

SIGMETRICS Conference on Measurement and Modeling of
Computer System, May 1996. Poster.

[14] Srinivasan S., Kettimuthu R., Subramani V., and Sadayappan P.,
“Selective Reservation Strategies for Backfill Job
Scheduling”, Workshop on Job Scheduling Strategies for Parallel
Processing , Lecture Notes in Computer Science, pp. 55-71, July
2002.

[15] Maheswarana M., Ali S., Siegel H.J, Hensgen D., Freund R.F,
“Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems”, Journal of Parallel and
Distributed Computing, Vol. 59, Issue 2, Nov. 1999, Pages 107–131

[16] Feitelson D.G, et al.,”Theory and Practice in Parallel Job
Scheduling”. In Proceedings of the Job Scheduling Strategies for
Parallel Processing (IPPS '97),

[17] Litka D.A., "The ANLIIBM SP Scheduling System," Workshop on
Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, Springer, vol. 945, 1995, pp. 295-303,

[18] Mu’alem A.W., Feitelson D.G.. “Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the IBM SP2
with Backfilling”. IEEE Transactions on Parallel and Distributed
Systems, Vol. 12(6), 2001, pp. 529-543.

[19] Ababneh I. and Bani-Mohammad S., “A new window-based job
scheduling scheme for 2D mesh multicomputers”. ELSEVIER,
Simulation Modelling Practice and Theory, 19(1):482–493, 2011.

[20] Horton I., “Ivor Horton's Beginning Java 2, JDK 5 Edition”, Text
Book, December 2004

[21] Saleh K., “Object model in Java: elements and application”,
Information and Software Technology ,Vol. 41, Issue 4, 15 March
1999, pp.235–241

[22] Chandio A.A., Zhu D., Sodhro A.H.. “Integration of Inter-
Connectivity of Information System (i3) using Web Services”.
In Proceedings of the International MultiConference of Engineers and
Computer Scientists (IMECS), Lecture Notes in Engineering and
Computer Science, Vol. 2195, pp. 651-655 (2012)

[23] Chapin, S., Cirne, W., Feitelson, D. G., Jones, P., Leutenegger, S.,
Schwiegelshohn, U., Smith, W., Talby, D. “Benchmarks and
Standards for the Evaluation of Parallel Job Schedulers”. Workshop
on Job Scheduling Strategies for Parallel Processing, Lect. Notes
Comput. Sci. vol. 1659, 1999, pp. 66-89

[24] Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/

[25] Lo, M., Mache, J., Windisch, K.J.”A Comparative Study of Real
Workload Traces and Synthetic Workload Models for Parallel Job
Scheduling”. Workshop on Job Scheduling Strategies for Parallel
Processing, Lecture Notes In Computer Science; Vol. 1459, 1998, pp
25-46.

[26] Lublin, U., Feitelson, D. “The Workload on Parallel Supercomputers:
Modeling the Characteristics of Rigid Jobs.” J. Parallel and
Distributed Computing, Vol. 63(11), 2003, pp.1105-1122.

[27] Chiang S.-H. and Vernon M. K.. “Characteristics of a large shared
memory production workload”, Workshop on Job Scheduling
Strategies for Parallel Processing, Lecture Notes in
ComputerScience, 2221: 159–187, 2001

[28] Downey A.B., “A parallel workload model and its implications for
processor allocation”, 6th International Symposium of High
Performance Distributed Computing, 1997, pp-112-123.

[29] Wang, L., Khan S.U, and Dayal J., “Thermal aware workload
placement with task-temperature profiles in a data center”. The
Journal of Supercomputing, 61(3): p. 780-803, 2012

[30] Chandio A.A., Yu Z, Syed F.S., Korejo I.A., “A Case Study on Job
Scheduling Policy for Workload Characterization and Power
Efficiency”, Sindh University Research Journal (Science Series),
2013, (to appear).

957

