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A b s t r a c t  

Large complex  p rog rams  are composed  of m a n y  
s m a l l  rou t ines  t ha t  i m p l e m e n t  abs t r ac t ions  for the 
rou t ines  t ha t  call them.  To be useful,  an  execu t ion  
profi ler  m u s t  a t t r i b u t e  execu t ion  t ime  in a way t h a t  
is  signif icant  for the logical s t r u c t u r e  of a p r o g r a m  
as well as for its t ex tua l  decomposi t ion .  This da ta  
m u s t  t hen  be displayed to the use r  in a conven i en t  
and informat ive  way. The g p r o f  profiler a ccoun t s  
• for the r u n n i n g  t ime of called rou t ines  in the run-  
ning t ime of the  rou t ines  t ha t  call them.  The design 
and use of this  profiler is descr ibed.  

1. P r o g r a m s  t o  b e  P r o f i l e d  

Software r e s e a r c h  e n v i r o n m e n t s  normal ly  
inc lude  m a n y  large p rog rams  both  for p r o d u c t i o n  
use and for e x p e r i m e n t a l  invest igat ion.  These pro- 
g rams  are typical ly  modular ,  in a c c o r d a n c e  with 
genera l ly  a c c e p t e d  pr inc ip les  of good p r og r a m 
design. Often they  cons is t  of n u m e r o u s  smal l  rou- 
t ines  t ha t  i m p l e m e n t  var ious abs t rac t ions .  Some- 
t imes  such large p rograms  are wr i t t en  by one pro- 
g r a m m e r  who has unde r s tood  the r e q u i r e m e n t s  for 
these  abs t rac t ions ,  and has p r o g r a m m e d  t h e m  
appropr ia te ly .  More f requen t ly  the  p r o g r a m  has 
had mul t ip le  au thors  and has evolved over t ime,  
changing the d e m a n d s  placed on the  i m p l e m e n t a -  
t ion  of the  a b s t r a c t i o n s  wi thout  changing the  imple-  
m e n t a t i o n  itself. Finally, the  p r o g r a m  may  be 
a s sembled  f rom a l ib ra ry  of a b s t r a c t i o n  imp l e me n-  
ta t ions  u n e x a m i n e d  by the  p r o g r a m m e r .  

Once a large p r o g r a m  is executable ,  i t  is of ten  
d e s i r a b l e  to i nc rease  its speed, especial ly  if smal l  
p o r t i o n s  of t h e  p r o g r a m  are found to domina te  its 
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execu t ion  t ime.  The purpose  of the  gprof  profiling 
tool is to help the u se r  evaluate  a l t e rna t ive  imple-  
m e n t a t i o n s  of abs t rac t ions .  We developed this  tool 
in r e sponse  to our efforts to improve  a code gene ra -  
tor  we were writ ing [Graham82].  

The gprof des ign takes  advantage  of the fac t  
t ha t  the p rog rams  to be m e a s u r e d  are large, s t ruc -  
t u red  and h ierarchica l .  We provide a profile in 
which the  execu t ion  t ime  for a set  of rou t ines  t h a t  
i m p l e m e n t  an a b s t r a c t i o n  is col lected and  charged  
to t ha t  abs t r ac t ion .  The profile can  be used to com- 
pare  and assess  the costs of var ious i m p l e m e n t a -  
t ions. 

The profi ler  can  be l inked into a p r o g r a m  
without  special  p lanning  by the p r o g r a m m e r .  The 
overhead for using gprof is low; bo th  in t e r m s  of 
added execu t ion  t ime  and in the volume of profiling 
in fo rma t ion  recorded .  

2. Types of Prof i l ing  

There are severa l  d i f fe rent  uses  for p r o g r a m  
profiles, and each ma y  requ i re  different  i n f o rma t ion  
f rom the profiles, or d i f ferent  p r e s e n t a t i o n  of the 
in format ion .  We d is t inguish  two broad  ca tegor ies  of 
profiles: those t ha t  p r e s e n t  coun ts  of s t a t e m e n t  or 
rou t ine  invocat ions ,  and those t h a t  display t iming 
in fo rma t ion  abou t  s t a t e m e n t s  or rou t ines .  Counts  
are typical ly p r e s e n t e d  in t a bu l a r  form, of ten in  
para l le l  with a l is t ing of the  source  code. Timing 
in fo rma t ion  could be s imi lar ly  p r e sen t ed ;  bu t  more  
t h a n  one m e a s u r e  of t ime  migh t  be assoc ia ted  with 
each s t a t e m e n t  or rou t ine .  For example,  in the 
f ramework  used  by gprof  each  profiled s e g m e n t  
would display two t imes:  one for the t ime  used by 
the  s e g m e n t  itself, and a n o t h e r  for the t ime  inher -  
i ted f rom code s e g m e n t s  i t  invokes.  

Execu t ion  counts  are used in m a n y  d i f fe ren t  
contexts .  The exact  n u m b e r  of t imes  a rou t ine  or 
s t a t e m e n t  is ac t iva ted  can  be used to d e t e r m i n e  if 
an a lgor i thm is pe r fo rming  as expected.  Cursory 
in spec t ion  of such  coun te r s  may  show a lgor i thms  
whose complexi ty  is unsu i t ed  to the task  a t  hand.  
Careful  i n t e r p r e t a t i o n  of coun t e r s  can  often sugges t  
i m p r o v e m e n t s  to accep tab le  a lgor i thms.  Precise  
e xa mi na t i on  can  uncover  subt le  e r rors  in an 
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algorithm. At this level, profiling counters are simi- 
lar to debugging statements whose purpose is to 
show the number of times a piece of code is exe- 
cuted. Another view of such counters is as boolean 
values. One may be interested that a portion of 
code has executed at all, for exhaustive testing, or 
to check that one implementation of an abstraction 
completely replaces a previous one. 

Execution counts are not necessarily propor- 
tional to the amount of time required to execute 
the routine or statement. Further, the execution 
time of a routine will not be the same for all calls on 
the routine. The criteria for establishing execution 
time must be decided. If a routine implements an 
abstraction by invoking other abstractions, the time 
spent in the routine will not accurately reflect the 
time required by the abstraction it implements. 
Similarly, if an abstraction is implemented by 
several routines the time required by the abstrac- 
tion will be distributed across those routines. 

Given the execution time of individual routines, 
gprof accounts to each routine the time spent for it 
by the routines it invokes. This accounting is done 
by assembl ing  a call graph with nodes  t ha t  are the 
rou t ines  of the p rog ram and  d i rec ted  arcs  t h a t  
r e p r e s e n t  calls f rom call s i tes to rout ines .  We dis- 
t inguish  among th ree  different  call graphs  for  a pro- 
gram.  The complete call graph i nco rpora te s  all rou-  
t ines  and all po ten t i a l  arcs,  inc luding  arcs  t h a t  
r e p r e s e n t  calls to func t iona l  p a r a m e t e r s  or func-  
t ional  variables.  This graph  con ta ins  the o the r  two 
graphs  as subgraphs .  The static call graph inc ludes  
all rou t ines  and  all possible arcs  t ha t  are no t  calls 
to func t iona l  p a r a m e t e r s  or variables .  The dynamic  
call graph inc ludes  only those rou t ines  and  arcs  
t r ave r sed  by the profiled execu t ion  of the program.  
This graph  need  not  include all rou t ines ,  nor  need  it  
inc lude  all po ten t ia l  arcs  be tween  the rou t ines  i t  
covers. It may, however, inc lude  arcs to func t iona l  
p a r a m e t e r s  or var iables  t h a t  the s ta t ic  call g raph  
may  omit .  The s ta t ic  call g raph  can  be d e t e r m i n e d  
f rom the (stat ic)  p rog ram text. The dynamic  call 
g raph  is d e t e r m i n e d  only by profiling an execu t ion  
of the p rogram.  The comple te  call g raph  for a 
monol i th ic  p rog ram could be d e t e r m i n e d  by da ta  
flow analysis  techniques .  The comple te  call g raph  
for p rog rams  tha t  change  dur ing  execut ion,  by 
modifying themse lves  or dynamica l ly  loading or 
overlaying code, may  never  be de t e rminab le .  Both 
the  s ta t ic  call g raph  and the  dynamic  call g raph  are 
used by gprof, but it does not search for the com- 
plete call graph. 

3. Gatherin/~ Profile Data 

Routine calls or statement executions can be 
measured bY having a compiler augment the code 
at strategic points. The additions can be inline 
increments to counters [KnuthTl] [Satterthwaite72] 
[Joy79] or calls to monitoring routines [Unix]. The 
¢ounter increment overhead is low, and is suitable 
for profiling statements. A call of the monitoring 
routine has an overhead comparable With a call of a 
regular routine, and is therefore only suited to 
profiling on a routine by routine basis. However, 

the monitorin~ routine solution has certain advan- 
tages. Whatever counters are needed by the moni- 
toring routine can be managed by the monitoring 
routine itself, rather than being distributed around 
the code. In particular, a monitoring routine can 
easily be called from separately compiled pro- 
grams. In addition, different monitoring routines 
can be linked into the program being measured to 
assemble different profiling data without having to 
change the compiler or recompile the program. We 
have exploited this approach; our compilers for C, 
Fortran77, and Pascal can insert calls to a monitor- 
ing routine in the prologue for each routine. Use of 
the monitoring routine requires no planning on part 
of a programmer other than to request that aug- 
mented routine prologues be produced during com- 
pilation. 

We are interested in gathering three pieces of 
information during program execution: call counts 
and execution times for each profiled routine, and 
the arcs of the dynamic call graph traversed by this 
execution of the program. By post-processing of 
this data we can build the dynamic call graph for 
this execution of the program and propagate times 
along the edges of this graph to attribute times for 
routines to the routines that invoke them. 

Gathering of the profiling information .should 
not greatly interfere with the running of the pro- 
gram. Thus, the monitoring routine must not pro- 
duce trace output each time it is invoked. The 
volume of data thus produced would be unmanage- 
ably large, and the time required to record it would 
overwhelm the running time of most programs. 
Similarly, the monitoring routine can not do the 
analysis of the profiling data (e.g. assembling the 
call graph, propagating times around it, discovering 
cycles, etc.) during program execution. Our solu- 
tion is to gather profiling data in memory during 
program execution and to condense it to a file as 
the profiled program exits. This file is then pro- 
cessed by a separate program to produce the listing 
of the profile data. An advantage of this approach is 
that the profile data for several executions of a pro- 
gram can be combined by the post-processing to 
provide a profile of many executions. 

The execution time monitoring consists of three 
parts. The first part allocates and initializes the 
runtime monitoring data structures before the pro- 
gram begins execution. The second part is the mon- 
itorlng routine invoked from the prologue of each 
profiled routine. The third part condenses the data 
structures and writes them to a file as the program 
terminates. The monitoring routine is discussed in 
detail in the following sections. 

3. I. KmecuUon Counts 

The gprof monitoring routine counts the 
number of times each profiled routine is called. The 
monitoring routine also records the arc in the call 
graph that activated the profiled routine. The count 
~ ~ssooi~ted with the  arc in  the  call g raph  r a t h e r  
t h a n  with the  rou t ine .  Call coun t s  for rou t ines  can  
t h e n  be d e t e r m i n e d  by s u m m i n g  the counts  on arcs  
directed  in to  t h a t  rou t ine .  In a m a c h i n e - d e p e n d e n t  
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fashion, the monitoring routine notes its own return 
address. This address is in the prologue of some 
profiled routine that is the destination of an arc in 
the dynamic call graph. The monitoring routine 
also discovers the return address for that routine, 
thus identifying the call site, or source of the arc. 
The source of the arc is in the caller, and the desti- 
nation is in the ca/lee. For example, if a routine A 
calls a routine B, A is the caller, and B is the callee. 
The prologue of B will include a call to the monitor- 
ing routine that will note the arc from A to B and 
either initialize or increment a counter for that arc. 

One can not afford to have the monitoring rou- 
tine output tracing information as each arc is 
identified. Therefore, the monitoring routine main- 
tains a table of all the arcs discovered, with counts 
of the numbers of times each is traversed during 
execution. This table is accessed once per routine 
call. Access to it must be as fast as possible so as 
not to overwhelm the time required to execute the 
program. 

Our solution is to access the table through a 
hash table. We use the call site as the primary key 
with the callee address being the secondary key. 
Since each call site typically calls only one callee, 
we can reduce (usually to one) the number of minor 
lookups based on the callee. Another alternative 
would use the callee as the primary key and the call 
site as the secondary key. Such an organization has 
the advantage of associating callers with callees, at 
the expense of longer lookups in the monitoring 
routine. We are fortunate to be running in a virtual 
memory environment, and (for the sake of speed) 
were able to allocate enough space for the primary 
hash table to allow a one-to-one mapping from call 
site addresses to the primary hash table. Thus our 
hash function is trivial to calculate and collisions 
occur only for call sites that call multiple destina- 
tions (e.g. functional parameters and functional 
variables). A one level hash function using both call 
site and callee would result in an unreasonably 
large hash table. Further, the number of dynamic 
call sites and callees is not known during execution 
of the profiled program. 

Not all callers and callees can be identified by 
the monitoring routine. Routines that were com- 
piled without the profiling augmentations will not 
call the monitoring routine as part of their prolo- 
gue, and thus no arcs will be recorded whose desti- 
nations are in these routines. One need not profile 
all the routines in a program. Routines that are not 
profiled run at full speed. Certain routines, notably 
exception handlers, are invoked by non-standard 
calling sequences. Thus the monitoring routine may 
know the destination of an arc (the callee), but find 
it difficult or impossible to determine the source of 
the arc (the caller). Often in these cases the 
apparent source of the arc is not a call site at all. 
Such anomalous invocations are declared "spon- 
taneous". 

3.2. E x e c u t i o n  T i m e s  

The e x e c u t i o n  t i m e s  for rout ines  can be gath-  
ered  in at least two ways. One method measures 

the execu t ion  t ime  of a rou t ine  by me a su r ing  the 
e lapsed t ime f rom rou t ine  e n t r y  to rou t ine  exit. 
Unfor tuna te ly ,  t ime  m e a s u r e m e n t  is compl ica ted  
on t ime-sha r ing  sys t ems  by the t ime-s l ic ing  of the 
program.  A second m e t h o d  samples  the  value of 
the  p r o g r a m  c o u n t e r  at  some in terval ,  and infers  
execu t ion  t ime  f rom the  d i s t r i bu t ion  of the samples  
within the p rogram.  This t e chn ique  is pa r t i cu la r ly  
su i ted  to t ime- sha r ing  sys tems ,  where the t ime-  
slicing can  serve as the  basis for sampl ing  the pro- 
g r am counte r .  Notice tha t ,  whereas  the f irst  
me thod  could provide exac t  t imings ,  the second  is 
i nhe ren t l y  a s t a t i s t i ca l  approximat ion .  

The sampl ing  m e t h o d  need  no t  requi re  suppo r t  
f rom the  opera t ing  sys tem:  all t ha t  is needed  is the 
abil i ty to set  and re spond  to " a l a r m  clock" in te r -  
r up t s  t ha t  r u n  re la t ive  to p r o g r a m  t ime.  It is 
impera t ive  tha t  the in te rva l s  be un i f o r m  since the 
sahapling of the  p r o g r a m  c o u n t e r  r a t h e r  t h a n  the 
du ra t ion  of the in te rva l  is the basis  of the d i s t r ibu-  
t ion. If sampl ing  is done too often, the  i n t e r r u p -  
t ions to sample  the p r o g r a m  c o u n t e r  will overwhelm 
the  r u n n i n g  of the profiled p rogram.  On the o the r  
hand,  the  p r og r a m m u s t  r u n  for enough  sampled  
in terva ls  t ha t  the d i s t r i bu t ion  of the  samples  accu-  
ra te ly  r e p r e s e n t s  the d i s t r i bu t i on  of t ime  for the 
execu t ion  of the p rogram.  As with rou t ine  call t rac-  
ing, the mon i to r ing  rou t ine  c a n  not  afford to o u t p u t  
i n fo rma t ion  for each p r og r a m c o u n t e r  sample.  In 
our  compu t ing  e n v i r o n m e n t ,  the opera t ing  s y s t e m  
can  provide a h i s tog ram of the  locat ion of the pro- 
g r am c o u n t e r  at the end  of each clock t ick (1 /60 th  
of a second)  in which a p r o g r a m  runs .  The histo-  
g r a m  is a s sembled  in m e m o r y  as the  p r o g r a m  runs .  
This facili ty is enab led  by our mon i to r ing  rou t ine .  
We have ad jus ted  the g ranu la r i t y  of the h i s tog ram 
so t ha t  p r o g r a m  c o u n t e r  values  ma p  one- to-one  
onto the h i s togram.  We make  the  simplifying 
a s s u m p t i o n  t ha t  all calls to a specific rou t ine  
requi re  the same a m o u n t  of t ime  to execute .  This 
a s s u m p t i o n  may  disguise t h a t  some calls (or worse, 
some call si tes)  always invoke a rou t ine  such  t h a t  
its execu t ion  is fas te r  (or slower) t h a n  the  average 
t ime  for t h a t  rou t ine .  

When the profiled p r o g r a m  t e r m i n a t e s ,  the arc 
table  and the  h i s tog ram of p r og r a m c oun t e r  sam- 
ples are wr i t t en  to a file. The arc tab le  is c ondensed  
to cons is t  of the  source  and  des t i na t i on  addresses  
of the arc and the c oun t  of the n u m b e r  of t imes  the 
arc was t r a ve r s e d  by this  execu t ion  of the p rogram.  
The r eco rded  h i s tog ram cons is t s  of c o u n t e r s  of the 
n u m b e r  of t imes  the p r og r a m c o u n t e r  was found to 
be in each of the ranges  covered by the  h i s togram.  
The ranges  themse lves  are s u m m a r i z e d  as a lower 
and uppe r  bound  and a s tep size. 

4. Post Processing 

Having gathered the arcs of the call graph and 
timing information for an execution of the program, 
we are interested in attributing the time for each 
routine to the routines that call it. We build a 
dynamic call graph with arcs from caller to callee, 
and propagate time from descendants to ancestors 
by topologically sorting the call graph. Time 
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propaga t ion  is pe r fo rmed  f rom the leaves of the call 
g raph  toward the roots, according to the order  
assigned by a topological n u m b e r i n g  algori thm. The 
topological n u m b e r i n g  ensu re s  tha t  all edges in the 
graph  go f rom higher  n u m b e r e d  nodes  to lower 
n u m b e r e d  nodes. An example  is given in Figure 1. 
If we propagate  t ime  f rom nodes in the order  
assigned by the algori thm, execut ion  t ime  can  be 
p ropaga ted  f rom descendan t s  to ances to r s  af ter  a 
single t raversa l  of each arc in the call graph.  Each 
p a r e n t  receives  some f rac t ion  of a child 's  t ime.  
Thus t ime is charged to the cal ler  in addi t ion to 
being charged  to the callee. 

Let C, be the n u m b e r  of calls to some rout ine ,  
e, and C~, be the n u m b e r  of calls f rom a cal ler  r to a 
callee e. Since we are assuming  each call to a rou- 
t ine takes  the average a m o u n t  of t ime  for all calls 
to tha t  rout ine ,  the cal ler  is accoun tab le  for C~e/C, 
of the t ime spen t  by the callee. Let the S e be the 
self  time of a rout ine ,  e. The self t ime of a rou t ine  
can  be d e t e r m i n e d  from the t iming  in fo rma t ion  
ga the red  dur ing  profiled p rog ram execut ion.  The 
tota l  t ime,  Tr, we wish to accoun t  to a rou t ine  r ,  is 
t hen  given by the r e c u r r e n c e  equat ion:  

TT=S,+ Z r,x 
r CALLS e Ci 

where r CALLS e is a relation showing all routines e 
called by a routine r. This relation is easily avail- 
able from the call graph. 

However, if the execution contains recursive 
calls, the call graph has cycles that cannot be topo- 
logically sorted. In these cases, we discover 
strongly-connected components in the call graph, 
treat each such component as a single node, and 
then sort the resulting graph. We use a variation of 
Tarjan's strongly-connected components Mgorithm 
that discovers strongly-connected components as it 
is assigning topological order numbers [Tarjan72]. 

Time propagation within strongly connected 
components is a problem. For example, a self- 
recursive routine (a trivial cycle in the call graph) is 
accountable for all the time it uses in all its recur- 
sive instantiations. In our scheme, this time should 
be shared among it: call graph parents. The arcs 
from a routine tv itself are of interest, but do not 
participate iz~ time propagation. Thus the simple 

equation for time propagation does not work within 
strongly connected components. Time is not pro- 
pagated from one member of a cycle to another, 
since, by definition, this involves propagating time 
from a routine to itself. In addition, children of one 
member of a cycle must be considered children of 
all members of the cycle. Similarly, parents of one 
member of the cycle must inherit all members of 
the cycle as descendants. It is for these reasons 
that we collapse connected components. Our solu- 
tion collects all members of a cycle together, sum- 
ming the time and call counts for all members. All 
calls into the cycle are made to share the total time 
of the cycle, and all descendants of the cycle pro- 
pagate time into the cycle as a whole. Calls among 
the members of the cycle do not propagate any 
time, though they are listed in the call graph 
profile. 

Figure 2 shows a modified version of the call 
graph of Figure i, in which the nodes labelled 3 and 
7 in Figure 1 are mutually recursive. The topologi- 
cally sorted graph after the cycle is collapsed is 
given in Figure 3. 

Since the technique described above only col- 
lects the dynamic call graph, and the program typi- 
cally does not call every routine on each execution, 
different executions can introduce different cycles 
in the dynamic call graph. Since cycles often have 
a significant effect on time propagation, it is desir- 
able to incorporate the static call graph so that 
cycles will have the same members regardless of 
how the program runs. 

Cycle to be collapsed. 
Figure  2. 

Topological ordering 
Figure I. 

Topological numbering after cycle collapsing. 
Figure 3. 
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The static call graph can be constructed from 
the source text of the program. However, discover- 
ing the static call graph from the source text would 
require two moderately difficult steps: finding the 
source text for the program (which may not be 
available), and scanning and parsing that text, 
which may be in any one of several languages. 

In our programming system, the static calling 
information is also contained in the executable ver- 
sion of the program, which we already have avail- 
able, and which is in language-independent form. 
One can examine the instructions in the object pro- 
gram, looking for calls to routines, and note which 
routines can be called. This technique allows us to 
add arcs to those already in the dynamic call graph. 
If a statically discovered arc already exists in the 
dynamic call graph, no action is required. Statically 
discovered arcs that do not exist in the dynamic 
call graph are added to the graph with a traversal 
count of zero. Thus they are never responsible for 
any time propagation. However, they may affect 
the structure of the graph. Since they may com- 
plete strongly connected components, the static 
call graph construction is done before topological 
ordering. 

5. Data Presentation 

The data is presented to the user in two 
different formats. The first presentation simply 
lists the routines without regard to the amount of 
time their descendants use. The second presenta- 
tion incorporates the call graph of the program. 

5.1. The Flat Profile 
The fiat profi le  cons i s t s  of a l is t  of all  t h e  rou-  

t ines  t h a t  a r e  ca l led  dur ing  execu t ion  of t he  p ro -  
g r a m ,  wi th  t he  c o u n t  of t he  n u m b e r  of t i m e s  t h e y  
a r e  ca l led  and the  n u m b e r  of s e c o n d s  of e x e c u t i o n  
t i m e  for  which  t h e y  a re  t h e m s e l v e s  a c c o u n t a b l e .  
The r o u t i n e s  a re  l i s t ed  in d e c r e a s i n g  o r d e r  of execu-  
t ion  t ime .  A l is t  of the  r o u t i n e s  t h a t  a r e  n e v e r  
ca l l ed  dur ing  e x e c u t i o n  of t he  p r o g r a m  is also ava i l -  
ab le  to  ver i fy  t h a t  no th ing  i m p o r t a n t  is o m i t t e d  by  
th is  execu t ion .  The fiat  prof i le  g ives  a quick over-  
view of the  r o u t i n e s  t h a t  a r e  used ,  and shows the  
r o u t i n e s  t h a t  a re  t h e m s e l v e s  r e s p o n s i b l e  for  l a rge  
f r ac t i ons  of the  e x e c u t i o n  t ime .  In p r a c t i c e ,  th i s  
profi le  usua l ly  shows t h a t  no single func t ion  is 
overwhe lming ly  r e s p o n s i b l e  for t he  t o t a l  t i m e  'of t h e  
p r o g r a m .  Notice t h a t  for  th is  profi le ,  t he  ind iv idua l  
t i m e s  sum to t he  t o t a l  execu t ion  t ime .  

5.'b-. The Call Graph Profile 
Ideal ly ,  we would l ike to  p r i n t  t h e  cal l  g r a p h  of  

the p r o g r a m ,  b u t  we a re  l imi t ed  by  the  two- 
d i m e n s i o n a l  n a t u r e  of our  o u t p u t  dev ices .  We can -  
no t  a s s u m e  t h a t  a call  g r a p h  is p lanar ,  and  even if i t  
is, t h a t  we can  p r i n t  a p l a n a r  vers ion-of  it .  I n s t ead ,  
we choose  to l i s t  e a c h  rou t ine ,  t o g e t h e r  With infor-  
'ma t i on  a b o u t  t h e  r o u t i n e s  t h a t  a r e  i t s  d i r e c t  
p a r e n t s  and  ch i ld ren .  This l is t ing p r e s e n t s  a win- 
dow into  the  ca l l  g raph .  Based  o n  Our e x p e r i e n c e ,  
b o t h  p a r e n t  i n f o r m a t i o n  and ch i ld  i n i o r m a t i 0 n  is 
i m p o r t a n t ,  and  should  be avai lab le  wi thou t  

s ea r ch ing  t h r o u g h  the  ou tpu t .  

The m a j o r  e n t r i e s  of the  cal l  g r a p h  profi le  a re  
t he  e n t r i e s  f rom the  fiat  profi le ,  a u g m e n t e d  by  the 
t ime  p r o p a g a t e d  to  e a c h  rou t i ne  f rom i ts  d e s c e n -  
dan t s .  This prof i le  is s o r t e d  by  the  s u m  of t h e  t ime  
for t h e  rou t i ne  i tself  p lus  the  t i m e  i n h e r i t e d  f rom 
i ts  d e s c e n d a n t s .  The prof i le  shows which of the  
h ighe r  level  r o u t i n e s  spend  la rge  p o r t i o n s  of the  
t o t a l  execu t ion  t i m e  in the  r o u t i n e s  t h a t  t h e y  call .  
F o r  each  rou t ine ,  we show the  a m o u n t  of t i m e  
p a s s e d  by e a c h  chi ld  to  t h e  rou t ine ,  which i nc ludes  
t i m e  for the  chi ld  i t se l f  and  for  t he  d e s c e n d a n t s  of 
t h e  chi ld  (and t hus  t he  d e s c e n d a n t s  of t h e  rou t ine ) .  
We also show t h e  p e r c e n t a g e  t h e s e  t i m e s  r e p r e s e n t  
of t he  t o t a l  t ime  a c c o u n t e d  to t he  chi ld.  S imi la r ly ,  
t he  p a r e n t s  of e ach  r o u t i n e  a re  l i s ted ,  along with 
t ime ,  and  p e r c e n t a g e  of t o t a l  r o u t i n e  t i m e ,  p ro -  
p a g a t e d  to  e a c h  one.  

Cycles a re  h a n d l e d  as  s ingle en t i t i e s .  The cycle  
as a whole is shown as t h o u g h  i t  were  a s ingle rou-  
t ine ,  e x c e p t  t h a t  m e m b e r s  of the  cyc le  a r e  l i s t ed  in 
p l ace  of t he  ch i ld ren .  Al though the  n u m b e r  of ca l ls  
of e a c h  m e m b e r  f rom within the  c y c l e  a re  shown, 
t h e y  do no t  a f fec t  t i m e  p r o p a g a t i o n .  When a chi ld  is 
a m e m b e r  of a cyc le ,  t he  t ime  shown is the  
a p p r o p r i a t e  f r a c t i o n  of the  t ime  for t he  whole cycle .  
Se l f - r ecurs ive  r o u t i n e s  have  t h e i r  ca l ls  b r o k e n  down 
into  cal ls  f rom the  ou t s ide  and s e l f - r ecu r s ive  cal ls .  
Only the  ou t s ide  ca l l s  a f fec t  t he  p r o p a g a t i o n  of 
t ime .  

The following e x a m p l e  is a t y p i c a l  f r a g m e n t  of a 
cal l  g raph .  

The en ' t ry in the  cal l  g r a p h  prof i le  l i s t ing for  th is  
e x a m p l e  is shown in F igure  4. 

The e n t r y  is for r ou t i ne  EXAMPLE, which has  the  
Cal ler  r o u t i n e s  as  i t s  p a r e n t s ,  and  the  Sub r o u t i n e s  
as i ts  ch i ld ren .  The r e a d e r  should  k e e p  in m i n d  
t h a t  all i n f o r m a t i o n  is g iven  w i t h  r e s p e c t  to EXAM- 
PLE. The index  in t he  f i rs t  co lumn  shows t h a t  EXAM- 
PLE is t he  s econd  e n t r y  in t he  profi le  l is t ing.  The 
EXAMPLE r o u t i n e  is Called t e n  t imes ,  four  t i m e s  by  
CALLER1, and  six t i m e s  b y  CALLER2. Consequen t ly  
4 0 ~  of EXAmPLE's t i m e  is p r o p a g a t e d  to  CALLER1, a n d  
60~ of EXAMPLE'S t ime  is p r d p a g a t e d  %o CALLER2. 
The self 'and d e s c e n d a n t  f ie lds  o'f t he  p a r e n t s  show 
the  a m o u n t  o'f self  and  d e s c e n d a n t  t i m e  EXAMPLE 
p r o p a g a t e s  to  ' t hem '(but no t  t h e  ' t ime u s e d  by the  
p a r e n t s  d i rec t ly ) .  Note t h a t  EXAMPLE cal ls  i~tself 
r ecu i ' s ive ly  four t imes .  The rou t i ne  EXAMPLE cal ls  
r ou t i ne  SUB1 twen ty  t imes ,  SUB2 once,  and  n e v e r  
cal ls  SUB3. S ince  sUB2 ~s ca l led  a ' total  of five t imes ,  
20~ of i ts  self  and  d e s c e n d a n t  ' t ime is p r o p a g a t e d  to  
EXAMPLE's d e s c e n d a n t  t ime  field. Because  SUB1 is a 
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called/total parents 
index ~time self descendants called+self name index 

eaUed/toted children 
0.20 1.20 4/10 CALLER1 [7] 
0.30 I.B0 0/I0 CALLER2 [1] 

[2]  41.5 0.50 3.00 104-4 E'XAMPLE [2] 
1.50 1.00 20/40 SUB1 <cycle1> L4] 
o.oo o.so 1/5 SUB2 [9] 
0.00 0.00 O/S SUB3 [11] 

Profile entry for EXAMPLE. 
Figure 4. 

member of cycle 1, the self and descendant times 
and call count fraction are those for the cycle as a 
whole. Since cycle i is called a total of forty times 
(not counting calls among members of the cycle), it 
propagates 5DZ of the cycle's self and descendant 
time to EXAMPLE's descendant time field. Finally 
each name is followed by an index that shows where 
on the listing to find the entry for that routine. 

6. Using the Profiles 

The profiler is a useful tool for improving a set 
of routines that implement an abstraction. It can 
be helpful in identifying poorly coded routines, and 
in evaluating the new algorithms and code that 
replace them. Taking full advantage of the profiler 
requires a careful examination of the call graph 
profile, and a thorough knowledge of the abstrac- 
tions underlying the program. 

The easiest optimization that can be performed 
is a small change to a control construct or data 
structure that improves the running time of the 
program. An obvious starting point is a routine that 
is called many times. For example, suppose an out- 
put routine is the only parent of a routine that for- 
mats the data. If this format routine is expanded 
inline in the output routine, the overhead of a func- 
tion ca]] and return can be saved for each datum 
that needs to be formatted. 

The drawback to inline expansion is that the 
data abstractions in the program may become less 
parameterized, hence less clearly defined. The 
profiling will also become less useful since the loss 
of routines will make its output more granular. For 
example, if the symbol table functions "lookup", 
"insert", and "delete" are all merged into a single 
parameterized routine, it will be impossible to 
determine the costs of any one of these individual 
functions from the profile. 

Further potential for optimization lies in rou- 
tines that implement data abstractions whose total 
execution time is long. For example, a lookup rou- 
tine might be called only a few times, but use an 
inefficient linear search algorithm, that might be 
replaced with a binary search. Alternately, the 
discovery that a rehashing function is being called 
excessively, can lead to a different hash function or 
a larger hash table. If the data abstraction function 
cannot easily be speeded up, it may be advanta- 
geous to cache its results, and eliminate the need to 
rerun it for identical inputs. These and other ideas 
for program improvement are discussed in [Bent- 
ley81 ]. 

This tool is best used in an iterative approach: 
profiling the program, eliminating one bottleneck, 
then finding some other part of the program that 
begins to dominate execution time. For instance, 
we have used gprof on itself; eliminating, rewriting, 
and inline expanding routines, until reading data 
files (hardly a target for optimization!) represents 
the dominating factor in its execution time. 

Certain types of programs are not easily 
analyzed by gprof. They are typified by programs 
that exhibit a large degree of recursion, such as 
recursive descent compilers. The problem is that 
most of the major routines are grouped into a single 
monolithic cycle. As in the symbol table abstrac- 
tion that is placed in one routine, it is impossible to 
distinguish which members of the cycle are respon- 
.sible for the execution time. Unfortunately there 
are no easy modifications to these programs that 
make them amenable to analysis. 

A completely different use of the profiler is to 
analyze the control flow of an unfamiliar program. 
If you reeeive a program from another user that you 
need to modify in some small way, it is often 
unclear where the changes need to be made. By 
running the program on an example and then using 
gprof, you can get a view of the structure of the 
program. 

Consider an example in which you need to 
change the output format of the program. For pur- 
poses of this example suppose that the call graph of 
the output portion of the program has the following 
structure: 

Initially you look through the gprof output for the 
system call "WRITE". The format routine you will 
need to change is probably among the parents o( 
the "WRITE" procedure. The next step is tc look at 
the profile entry for each of parents of "WRITE", in 
this example either "FORMATI" or "FORMAT2", to 
determine which one to change. Each format rou- 
tine will have one or more parents, in this example 
"CALCI", "CALC2", and "CALC3". By inspecting the 
source code ~or each of these routines you can 
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d e t e r m i n e  which f o r m a t  rou t ine  g e n e r a t e s  the  out-  
p u t  t h a t  you wish to modify.  Since the  gprof  e n t r y  
shows all the  p o t e n t i a l  cal ls  to  the  f o r m a t  r ou t i ne  
you i n t end  to  change ,  you can  d e t e r m i n e  if your  
modi f i ca t ions  will a f fec t  o u t p u t  t h a t  should  be le f t  
a lone.  If you des i r e  to change  the  o u t p u t  of 
"CALC2", but not "CALC3", then formatting routine 
"FORMAT2" needs to be split into two separate rou- 
tines, one of which implements the new format. 
You can then retarget just the call by "CALC2" that 
needs the new format. It should be noted that the 
static call information is particularly useful here 
since the test case you run probably will not exer- 
cise the  e n t i r e  p r o g r a m .  

7. C o n c l u s i o n s  

We have c r e a t e d  a prof i le r  t h a t  a ids  in the  
eva lua t ion  of m o d u l a r  p r o g r a m s .  For  each  rou t i ne  
in t he  p r o g r a m ,  the  profi le  shows the  e x t e n t  to 
which t h a t  r ou t i ne  he lps  s u p p o r t  va r ious  a b s t r a c -  
t ions ,  and  how t h a t  r ou t i ne  uses  o t h e r  a b s t r a c t i o n s .  
The profi le  a c c u r a t e l y  a s s e s s e s  the  cos t  of r o u t i n e s  
a t  all levels  of the  p r o g r a m  decompos i t i on .  The 
prof i l e r  is eas i ly  used ,  and can  be  c o m p i l e d  into the  
p r o g r a m  wi thou t  any p r io r  p lanning  by the  p ro-  
g r a m m e r .  I t  adds  only five to t h i r t y  p e r c e n t  execu-  
t ion  o v e r h e a d  to t he  p r o g r a m  being  prof i led,  p ro-  
duces  no add i t i ona l  o u t p u t  unt i l  a f t e r  t he  p r o g r a m  
finishes,  and  allows the  p r o g r a m  to be  m e a s u r e d  in 
i ts  a c t u a l  e n v i r o n m e n t .  Final ly ,  t he  p rof i l e r  r uns  on 
a t i m e - s h a r i n g  s y s t e m  using only the  n o r m a l  se r -  
v ices  p rov ided  by  the  o p e r a t i n g  s y s t e m  and com-  
p i le rs .  
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