
J o b S c h e d u l i n g U n d e r the
P o r t a b l e Batch S y s t e m

Robert L. Henderson 1

NAS Systems Division
N A S A A m e s R e s e a r c h C e n t e r

Abstract

The typical batch queuing system schedules jobs for execution by a set of queue
controls. The controls determine the queue from which jobs will be selected. Within
each queue, jobs are typically selected in first-in, first-out (FIFO) order. This limits the
set of scheduling policies available to a site.

The Portable Batch 2ystem (PBS) removes this limitation by providing an external
scheduling module. This separate program has full knowledge of the available queued
jobs, running jobs, and system resource usage. Sites are able to implement any policy
expressible in one of several procedural languages. Policies may range from "best fit"
to "fair share" to purely political. Scheduling decisions can be made over the full set
ofjobs regardless of queue or order. The scheduling policy can be changed to fit a wide
variety of computing environments and scheduling goals. This is demonstrated by the
use of PBS on an IBM SP-2 system at NASA Ames.

1: I n t r o d u c t i o n

Job scheduling consists of two activities. First is selection for execution of a job or
jobs from the set of submitted jobs. Second is the allocation of memory and CPU
resources among the set of jobs that have be selected for execution. The second activ-
ity is in the domain of the operating system kernel and will not be discussed in this
paper. The first activity is typically part of a batch add-on subsystem and is the subject
of this paper.

The typical batch subsystem is queue-based and schedules or selects jobs based on
a set of queue controls. The nature and availability of these controls often limit the
range of policies a site may implement. The scheduling policy at a given site may be a
computer science related problem, such as determining the best fit of jobs in memory
or aiming toward maximum CPU usage. Other sites however have policies that are
driven by factors that are not related to computer science. These factors frequently
include finance and even office politics. For example, priority may be given to jobs
submitted by the department that owns the hardware, to a user who has "money"
banked in his/her account, or to a researcher whose project is in favor with the man-
agement.

1. Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA
94035-1000

280

To overcome policy limitations, the Numerical Aerodynamic Simulation (NAS)
Facility at NASA Ames Research Center has developed a new batch system which
provides an external job scheduler. This detachment of policy and implementation
results in full freedom to express a site's job scheduling policy.

2: Q u e u e B a s e d S c h e d u l i n g

A number of batch systems are available for open systems. The early ones only sup-
ported serial jobs and were commonly found on supercomputers. With the increasing
interest of cluster computing, batch systems became more important and their capabil-
ities have been expanded to include knowledge of parallel jobs.

It is interesting to examine several of these systems to see the common approach to
scheduling and the weakness therein.

2.1: Early Batch Queuing

The first batch job queuing system which gained widespread use was the Network
Queuing System (NQS) developed at NAS in the mid 1980s.[1] NQS supported multi-
ple queues of several types. Pipe queues fed jobs into execution queues. Jobs in any
given execution queue were placed into execution in a pure FIFO order. Limited con-
trois were available to the systems operators and administrators. Queues could be
turned on or off and the number of concurrent running jobs in each queue could be set.
There was no provision to examine the level of system resource usage.

2.2: Current Batch Systems

Three newer batch systems are popular today. Each provides support for worksta-
tion clusters and improved scheduling controls. However, the controls still tend to be
queue based.

2.2.1: Condor

Condor, a batch system designed to distribute serial jobs among workstations in a
cluster, and developed at the University of Wisconsin, can be credited with starting the
interest in cluster computing in 1987 and 198812] [3]. Support for PVM parallel jobs
has been added. While Condor does not provide queues as do most other batch sys-
tems, its concept of classes serves much the same purpose.

When a job is submitted to Condor, its requirements are sent to a central negotiator
daemon. System information, including load average and current owner keyboard/
mouse activity, is forward to a collector daemon. The negotiator attempts to match jobs
with available hosts. This is accomplished by taking the job requirements, expressed
as logical expressions, and the system information and applying a set of rules. If the
rules match, the job is initiated.

As a general batch system, two limitations exist with Condor as a result of its
design goal to fill empty cycles on workstations. The rule set is limited to determining
if a job can run somewhere. It does not provide the "best" ordering. Also, Condor pro-
vides no usage limit enforcement.

281

2.2.2: Distributed Queuing System

Developed at the Super Computations Research Institute at Florida State Univer-
sity, the Distributed Queuing System fDQS) has gained popularity both on large sys-
tems and workstation clusters.[4] Release 2 of DQS provided support for PVM. This
support was removed in release 3 in favor of developing support for MPI.

DQS is typically set up with a number of queues. Jobs are automatically entered
into one or more queues based on the job requirements. Each queue points to a host
and has a specification of the load conditions under which jobs may be run on that
host. The number of concurrent jobs from the queue can also be controlled.

2.2.3: Load Sharing Facility

The Load Sharing Facility (LSF) is a commercial product based on the Utopia
project at the University of Toronto.[5] Unlike the other batch systems, LSF is
designed to load level inter-actively run processes. It comes with an add-on batch sub-
system called lsbatch. Lsbatch is queue-based. Jobs are placed into a queue based on a
large number of parameters. Each queue may point to one or more hosts on which jobs
may be executed. On each host, a load monitor reports current resource usage to a cen-
tral collector. This information, together with more parameters including queue prior-
ity, load average setting, and time windows, is used to determine from which queues
jobs can be initiated.

Of the various batch systems, lsbatch provides the widest assortment of controls.
However, a site is still restricted to the provided controls.

3: The Portable Batch System

With much NQS experience on supercomputers, participation in the POSIX work-
ing group on Batch Extensions, and increasing interest in parallel processing, the NAS
Division at NASA Ames found the scheduling capability of current batch systems
lacking. Therefore, NAS decided to produce a second generation batch system which
would support not only a range of system types, but also allow for the specification and
implementation of almost any scheduling policy. This system is called the Portable
Batch system (PBS).

3.1: General Description

The general appearance of PBS is similar to that of other batch systems with the
major exception being scheduling. In addition to the usual collection of:

�9 client commands for submission, modification, and monitoring jobs,
�9 operator and administrator commands for configuration, modification, and mon-

itoring the batch system,
�9 an API library for interfacing the commands to the Batch Server.

PBS comes with four daemon processes. Three are similar in purpose to daemon pro-
cesses found in other batch systems. The fourth is the basis of the new capability. The
four daemons are:

�9 The Job Server - owns and manages jobs and queues, is a central collection point
for jobs, and a focal point for client communication. The server will also transfer
jobs to the associated execution server or to other Job Servers.

282

The Resource Monitor - gathers resource availability and usage information
about the host system on which it runs.
The Job Execution Server - is known as the Machine Orientated Miniserver
(MOM), because the Execution server is the mother or shepherd of all batch jobs
on a host. MOM places jobs into execution, monitors and controls their
resources usage, and cleans up after they complete.
The Scheduler - is a process which obtains information about jobs ready to run
or currently running from the Batch Server and about resource availability and
usage from the Resource Monitor. The scheduler then directs the server as to
what, if any, action should be taken.

Jobs

f

r

Figure 1. PBS on a Single Host

Job Servert ~ '

I
T

Scheduler

MOM I

~ Res Monitor !

. J

The functional distribution of services among the four daemons allows PBS to sup-
port a wide range of system types. For example, on traditional supercomputers, all four
daemons may be (but are not required to be) on the one system as shown in Figure 1.
Jobs arrive in the Job Server, and information is exchanged between the Scheduler and
both the Server and the Resource Monitor. If a job is selected for execution by the
Scheduler, it is sent to MOM to be executed.

With a workstation cluster, the PBS daemons are arranged as shown in Figure 2.
The flow of information is the same as in Figure 1 with the exception that there are
multiple Resource Monitors for the Scheduler to talk with and multiple MOMs. The
Scheduler tells the Server which MOM (hos0 should run the job.

3.2: External Scheduler

The power of PBS comes from the separation of functions into different processes
as shown in Figures 1 and 2. This is especially true of the separation of the scheduling
function from the other pieces of the system. This separation and the tools provided
allow a site to implement any scheduling policy.

To appreciate the power of the Scheduler, it is necessary to have a basic understand-
ing of the interactions between the scheduler and the other parts of the batch system,
and the general flow within the scheduler.

283

Figure 2. PBS on a Cluster

~ R e s Moni to r ~

3.2.1: Interface to the Batch S y s t e m

The Scheduler is contacted by the Server when (1) a new job is queued, (2) a run-
ning job terminates, or (3) a timer expires. The Scheduler uses the same Applications
Programming Interface (API) as do the user and administrator commands, to query
and direct the Server. The Server grants the Scheduler full administrator privilege.
Thus the Scheduler can run jobs, delete jobs, signal jobs, and even reconfigure the
queues and the Server itself. The API routines commonly used by the Scheduler are:

�9 pbs._statjob m queries status of an identified job or all jobs in a queue or all jobs
in the server.

�9 pbs_statque - - queries status of one or all queues.
�9 pbs_statsvr-- queries status of the server.
�9 pbs_ranjob - - runs a job at a specified host.
�9 pbs_deljob ~ deletes a job from the batch system. If the job is running it is

killed.
�9 pbs_holdjob - - places a hold on a job; on supported systems this causes a run-

ning job to be checkpointed and re-queued.
�9 pbs_rlsjob m releases a hold on a job.
�9 pbs_sigjob - - signals a job; can be used to suspend a job.

3.2.2: Interface to S y s t e m Resources

The Resource Monitor exists to provide the Scheduler with knowledge of the avail-
able system resources and of the resources currently being used. What resources are
known to the Resource Monitor are specific to the host. Generally, the known
resources are: total and available memory (real and/or virtual), swap space, load aver-
age, and file system size. Usage information about a specific job (session) is available
on most systems. On workstations, the time since the last use of the keyboard or mouse
is available.

284-

In addition to the information available from the operating system, the Resource
Monitor can be provided with a file containing "statiC' information such as availability
of software or time of permitted access.

The Scheduler and the Resource Monitor use a special API to communicate. The
Scheduler sends the Resource Monitor a complex query which is made of many key-
word strings. The Resource Monitor responds with the value filled in for each string.
For example, if the Scheduler sends:

pids [job=123]
totmem
phymem
loadave

the Resource Monitor might respond with:
pids [job=123]=456,457,459
totmern=33554432
phymem=16777216
loadave=l. 5

informing the scheduler that the pids in session 123 are 456, 457, and 459, the total vir-
tual memory is 32MB, the total physical memory is 16MB, and the load average is 1.5.

The information thus received from the Resource Monitor is available to the Sched-
uler for decision making.

3.2.3: General Scheduler Flow

The general flow during a scheduling cycle starts with the wake up call from the
Server. The Scheduler queries the Server for information on jobs and optionally on
queues and server attributes. The Scheduler also queries the Resource Monitor for
information on resource availability.

Next, a site-supplied procedure evaluates the information and selects from a num-
ber of possible actions: (1) run one or more jobs, (2) suspend one or more jobs, (3) kill
one or more jobs, or (4) no action at all. Any combination of the first three or the fourth
is possible depending on the procedure. The selected actions are sent to the Server.

When the scheduling cycle is complete, the Scheduler closes the connection to the
Server and waits for a new connection, which starts a new scheduling cycle.

3.2.4: Scheduler Implementations

PBS provides two different sets of tools which allow the site to implement its
scheduling policies in two different methods. The two methods trade off capabilities
and complexity.

The BASL Scheduler -

The first method is a complete yacc - lex based scheduler program that is an inter-
preter of a PBS defined language. The site writes a scheduling script in the BAtch
Scheduling Language (BASL). BASL is a procedural language that is similar in syntax
to C. The main features of BASL are:

�9 offers variables to declare and hold the data required from the Server, from the
Resource Monitor, time and date information, and local data.

�9 supports string concatenation and arithmetic operations.

285

�9 provides for decision making and looping over the range of hosts, queues, and
jobs through control constructs.

�9 provides ability to command the Server through action statements.

When the Scheduler starts, it reads and parses the provided script. Then, on each
scheduling cycle, the Scheduler gathers the information required and executes the
script, evaluating the data and directing the Server to take action.

Tel Scheduler -

The other supplied method is a set of Tool Control Language (Tel) routines that
allow the site to write a Tel based scheduler.J6] The routines are provided which sup-
ply the scheduler framework and interface to both the Scheduler and the Resource
Monitor.

The implementation of a scheduler in Tcl is more complex than in BASL, but the
site gains flexibility that allows the implementation of a wider range of policies. An
example of this flexibility is given when discussing the current SP-2 scheduling later
in this article.

Yet another alternative -

If neither of the two supplied implementation methods is satisfactory, a site may use
the supplied APIs and implement a complete scheduler program in the C, or similar
language. This ability to replace the scheduling controls without having to modify the
basic batch system provides both a systems administrator site-specific controls and a
researcher with a excellent tool to test scheduling theories.

4: Scheduling Examples

The best demonstration of the power of scheduling in PBS is some examples of
both BASL and Tcl. These examples show the power of scheduling when full informa-
tion about the jobs and system resources is available and the policy implementation is
not bound by limited controls.

4.1: Serial Jobs

The following is a very simple BASL script to introduce the language. It is not very
practical, but is a place to start. The script will run up to 3 jobs if the load average is
l~s ~an2~:
global variable nrun;

host resource loadave;

job requirement cput jcput;

rm this_host;

foreach host {
nrun = O;
if (loadave < 2.0)
foreach job {
if (jcput < 60)

run;

(

{

1

2

3

4

5

6
7
8
9

I0
Ii

12

286

nrun += I; 13

} 14
if (nrun > 2) exit; 15

} 16

} 17

} 18

Lines 1 through 3 declare variables. In line 1 "global" indicates that the variable
is defined and initialized within the script and "variable" indicates that the variable
is a simple type. On line 2, " h o s t " indicates the data for this variable is obtained from
the resource monitor, " r e s o u r c e " is the type, and " l o a d a v e " is the name of the
resource and the variable name. Line 3 declares the variable with an alias of "j c p u t "
whose source is the jOb status query to the server, whose type is " r e q u i r e m e n t "
(one of the listed job resource requirements), and whose requirement name is "cput"
(CPU time). Both host and job variables are actually arrays with an entry for each host
and job respectively. Line 5 specifies on which host (one named "this_host") the
Resource Monitor is found.

Line 7 starts the procedure by indexing the "host" variable through each member of
the army. Thus line 9 examines the loadave on each host. Line 10 loops once for each
job for which status was returned from the server. Thus in line 11 the "CPU time"
requirement of each job is checked in turn. If it is less than 60 seconds, line 12 directs
that the job should be run.

Line 15 stops the process if 3 jobs have been scheduled during this cycle.

4.2: Serial Jobs on a Cluster

In the prior section a BASL script was explained that scheduled jobs based on load
average on a single host. Here that script is expanded to schedule serial jobs on a clus-
ter0ffivesystems:

global variable nrun; 1

host resource loadave; 2

job requirement cput jcput; 3

rm hostl; 4

rm host2; 5

rm host3; 6

rm host4; 7

rmhost5; 8

9
foreach host { I0
nrun = 0; ii

if (loadave < 2.0) { 12
foreach job { 13
if (jcput < 60) (14
run JID HID; 15
nrun += I; 16

} !7

if (nrun > 2) exit; 18

287

} 19

) 20

} 21

The only change required was to add the various host names, hostl through hostS,
and to modify the run statement, line 16, to specify the current job and current host. Of
course, the script ignores several factors that would be important in a real cluster, such
as workstation architecture, lime of day, and use by the workstation owner. A few sire-
pM ad~fionswilltakccareof~o~fac~rs ~ shownbelow:

global variable nrun;

host resource loadave;

host resource arch harch;

host resource idletime;

job requirement cput jcput;

job requirement arch jarch;

rm hostl;

rmhost2;

rmhost3;

rmhost4;

rm host5;

foreach host {
nrun = 0;

if (loadave < 2.0) {

foreach job {

if(((jarch==Xany#)ll(jarch==harch))
&&

(idletime > 15m)) {

if ((DAY>=MON) && (DAY <= FRI) &&

(NOW > 7:00:00) &&

(NOW < 18:00:00)) {

if (jcput < 60) {

run JID HID;

nrun += i;
}

} else if (jcput < 8h) {

run JID HID;

nrun += i;
)

if (nrun > 2) exit;
)

1

2

3
4

5

6

7

8

9

I0

ii

12

13

14
15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32
33

34
35

36

288

4.3: Parallel Jobs on a Parallel System

PBS supports several parallel systems including the CM-5 and Paragon. The newest
is NAS's IBM SP-2 which is composed of 160 nodes. 144 nodes are available to the
users and 16 are reserved for system development. Basically, the SP-2 is a workstation
cluster with a high speed switch interconnect.

The IBM SP-2 has two modules of system software that provides the image of a
single system. The IBM Job Manager allocates and frees nodes for all jobs in the sys-
tem. The IBM Parallel Operating Environment software, poe, is designed to be used by
the interactive user. The user indicates the number of nodes required or provides a list
of node names. Poe attempts to obtain the required nodes from the Job Manager, and
sets up the message routing switch.

Figure 3 shows that PBS considers the SP-2 to be a single system. There is only one
instance of MOM and of the Resource Monitor. In fact, PBS is not even on the SP-2,
but runs on a separate control workstation. Both MOM and the Resource Monitor
interact with the IBM Job Manager through the provided API.

Figure 3. PBS on the IBM SP-2

' !
MOM

IIII ~ I

f
IBM Node
Manager [

I

-.--- NO'DEn

J

To add to the complexity of the system, not all nodes on the SP-2 are identical.
Some have more memory or disk, and some have a HIPPI connection. The IBM Job
Manager is not aware of any differences, but PBS is. A "node list" file provided by the
administrator has an entry for each node. The minimum information per entry is the
name of the node. Nodes that are distinguished by some property also have that prop-
erty listed in their entry.

A PBS user specifies the node requirement of the job when the job is submitted.
The specification can be as simple as a number of nodes required or as complex as a

289

multiple set of properties required. For example, to ask for 16 nodes, the user would
submit a job as follows:

qsub -i nodes=f6

If a user needs two nodes with a HIPPI connection, one node with extra memory,
one node with extra memory and disk space, and 12 "plain" nodes, totalling 16, the
request would be

qsub -i nodes=2 :hippi+mem+mem: disk+12

When this job is considered for scheduling, the scheduler sends the node require-
ment string for each job to the Resource Monitor asking if the nodes are available. The
Resource Monitor reads the node file and maps the requested properties to node
names. The Resource Monitor then obtains the status of all nodes from the Job Manger
and performs a best fit. For each node request, the Resource Monitor returns one of
three responses, yes, no, or never. If the nodes for a given job are available and if the
job meets the other scheduling criteria, the Scheduler directs the Server to run the job.
MOM then makes the node list available to the job. Within the job script, the user
invokes a wrapper which calls poe with the host list and the nodes are assigned to the
job.

4.3.1: BASL Script for SP-2

Below is a sample BASL script to implement a scheduling policy used at NAS. It is
presented to demonstrate that PBS easily handles complex policies. The policy is:

1. Pr ime time, 6 AM to 6 PM

a. When less than 113 nodes in use:
1-32 node jobs limited to < 4 hours.
>32 node jobs limited to < 10 minutes.

b. When more than 112 nodes are already in use:
jobs limited to < 10 minutes. This maintains high availability on
the last 32 nodes.

2. Interactive Extension Period, 4 AM to 6 AM and 6 PM to 10 PM

a. When less than 113 nodes in use:
1 - 128 node jobs limited to < 6 hr.
> 128 node limited to < 10 rain.

b. Jobs using last 16 nodes are limited to less than 10 minutes

c. Jobs are not started if they might not complete before the end of the
shift.

3. Night time, 10 PM to 4 AM Monday through Fr iday and all day Sat-
u rday and Sunday.

a. 1-144 node jobs limited to < 6 hours.

b. Jobs are not started if they might not complete before the end of the
shift.

Note that all nodes are used exclusively by one job at a time, i.e. space sharing. This
policy reduces message passing latency between nodes assigned to the job.

290

rm 15003 sp2
job attribute job_state;
job attribute queue_type;
job requirement nodes;

job requirement nodect;
job requirement walltime;
job resource avail:~ID:nodes anodes;
host resource totpool;
host resource usepool;

global variable prime;

foreach host (
if((DAY >= Mon) && (DAY <= Fri) &&

(NOW >=6:00:00) &&
(NOW < 18:00:00)) (

Prime Time

foreach job (
if (job_state == "Q") {
if ((totpool - usepool) > 32) (
if ((nodect<33)&&(walltime>4h))
continue;

if ((nodect>32)&&(walltime>10m))
continue;

} else (
if ((nodect>=32) ll(walltime>10m))

continue;
}

if (anodes =="yes") (
run;
break;
) else if (anodes == "never")
delete JID REASON;

}
}

) else if ((DAY>=Mon)&&(DAY<=Fri) &&
((NOW>=4:00:00)&&(NOW<I6:00:00)) II
((NOW>=IS:00:00)&&(NOW<22:00:00))){

Interactive night
foreach job {
if ((job_state == "Q") &&

(queue_type == "E")) {

1
2
3

4
5

6
7
8
9

i0
II
12
13
14
15
16
17
18
19
2O

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

291

if ((totpool-usepool)>16) {

if ((nodect<129)&&(walltime>6h))
continue;

if ((nodect>128)&&(walltime>10m))
continue;

) else {

if ((nodect>=16) [l(walltime>10m))
continue;

)

if (NOW < 06:00:00) {

if ((DAY!=Sat) && (DAY != Sun) &&

(walltime >(06:10:00-NOW)))
continue;

)

if (anodes == "yes") {

run;
break;
) else if (anodes == "never")
delete JID REASON;

)
)

else {

Batch Night

foreach job (

if ((job_state=="Q") &&

(queue_type == "E")) {

if ((nodect>144)ll(walltime> 6h))
continue;

if (NOW < 06:00:00) {

if ((DAY!="Sat")&&(DAY!="Sun")&&

(walltime > (06:10:00-NOW)))
continue;

)

if (anodes == "yes") {
run;

break;

) else if (anodes == "never")
delete JID REASON;

)

The s t a t ement"de le t e JID

45
46

47
48

49
50

51
52
53

54
55

56
57
58
59

60
61
62
63
64
65
66

67

68

69
70
71
72
73
74
75

76

77
78
79

80
81

82
83
84
85
86

REASON;" as found on lines 35, 63, and 82 directs
the Server to delete the job and pass the reason given in the special variable "REASON"
tO the user. Note on line 75, that jobs are allowed to extend 10 minutes beyond the

292

night time period. This is done because the policy states that large jobs can run up to
10 minutes during this time.

4.3.2: Tel Script for the SP-2

The current job scheduling policy for the NAS SP-2 is similar to the one given in
section 4.3.1 above. It is implemented using the Tel based scheduler. The new policy
adds one major capability, automatic inclusion of scheduled down time.

A program already exists which is used to communicate scheduled dedicated and
maintenance time to the general user community. The data file for this program is
updated whenever the schedule changes. With the Tel script, it is not necessary to
duplicate the updates into the scheduling program, the script automatically invokes the
existing program and processes the output. When considering which jobs should be
started, the Tel script will ignore any which would run into the next scheduled down
time.

This is an example of a policy implementation in PBS that includes an ability that
was unplanned in the beginning, yet required no changes to the underlying batch sys-
tem. Scheduling policy development at the NAS Facility have been pragmatic. The
goal is to insure throughput rather than perform research into scheduling algorithms.
PBS has proven itself extremely useful in that environment.

5: S c h e d u l e r P e r f o r m a n c e

A concern was raised about the performance of the PBS scheduler. Does the separa-
tion of the scheduler or the use of a script language cause the scheduler to take too
much time?

Testing on several systems at the NAS Facility have not shown this to be a problem.
In fact, the responsiveness to the arrival of new jobs seems to be superior to the vendor
batch system. On the SP-2 under a production load of up to 50 jobs queued, the Tcl
based scheduling cycle has not taken more than 5 seconds. The typical time is 1 to 3
seconds. This is a small amount of overhead for jobs that run for many minutes or
hours.

Timing on an IBM 590 workstation using BASL shows the correlation between
cycle time, the number of jobs, and the complexity of the script. Table 1 summaries the
averages from a number of timing tests. Two scripts, one trivial and one fairly com-
plex, were measured against a queue with a length of 1, 10, 100, and 1000 jobs.The
trivial case timing establishes the overhead of obtaining the job information from the
Job Server. The timings for the non-trivial case show the impact of adding complexity
to the policy.

Tinaings for BASL on a Cray C90 show similar numbers. Due to production con-
straints, only the timings for the trivial case and only up to 100 jobs were gathered as
show in Table 2. These timings where taken on a loaded Cray whereas the 590 timings
where on a lightly loaded system.

293

Table 1: Scheduler Cycle Tune on IBM 590
(in seconds)

Jobs Triv ia l

10

I00

Non-trivial

1 0.02 0.04

0.28 0.35

1.0 1.8

1000 12. 15.

Table 2: Scheduler Cycle Tune on IBM 590
(in seconds)

Jobs Triv ia l Non- t r i v i a l

1 0.02 0.04

10 0.28 0.35

100 1.0 1.8

1000 12. 15.

Based on these numbers for BASL and the experiences on the SP-2 with Tel, sched-
uler performance does not appear to be a problem in PBS.

6: F u t u r e W o r k

Two efforts are under way to extend the support PBS offers for parallel jobs. First is
to provide support for "interactive" jobs scheduled through PBS. An "interactive"
batch job is one that is submitted to PBS and scheduled but the standard streams of the
job are connected to the submitter's terminal when it is run. This allows the user to run
interactive tools such as debuggers while the batch system is providing scheduling and
resource management for all jobs.

The second major effort is to extend PBS to fully support parallel jobs on clusters.
This will allow for the scheduling and reservation of multiple hosts per job and the cre-
ation of parallel tasks on those nodes. PBS will provide for shared use of nodes (in
which jobs are time-shared on the assigned nodes) and for exclusive use of nodes.
Extensions to BASL are being designed to enable the Scheduler to interpret the node
requirement expression, determine node availability from multiple Resource Monitors,
and to generate a node list which satisfies the requirement.

29Z~

7: Acknowledgments

PBS was developed as a joint project between the NAS Systems Division at NASA
Ames Research Center and the National Energy Supercomputer Center and Livermore
Computer Center at the Lawrence Livermore National Laboratories. The following
past and current members of the PBS development team deserve special recognition:

�9 NASA Ames Research Center employees:
Dave Tweten and John Musch for their leadership and support.

�9 Computer Sciences Corporation employees at Ames Research Center:
Tom Proett developer of most of the machine dependent code in the
Resource Monitor and MOM and the Tcl scheduler.

�9 Lawrence Livermore National Labs employees:
Kent Crispin and Terry Heidelberg, libraries and commands contribu-
tors; Bruce Kelly, commands and the C90 port implementor; special
acknowledgment to Clark Streeter, implementor of the Scheduler
BASL language

8: References

[1]Kingsbury, B. "The Network Queuing System", Sterling Software, PalG
Alto.

[2]Mutka, M. "Sharing in a Privately Owned Workstation Environment. =
Ph.D. thesis, University of Wisconsin, May 1988.

[3]Litzkow, M., Livny. M. and Mutka, M. "Condor--A Hunter of Idle Work-
Station". Proceeding of the 8th International Conference on Distributed
Computing Systems. San Jose, CA. June 1988.

[4]Duke, D., Green, T., and Pasko, J. "Research Toward a Heterogeneous
Networked Computing Cluster: The Distributed Queuing System Version
3.0". Supercomputing Computations Research Institute, Florida State
University, March 2, 1994.

[5]Zhou, S., Zheng, Y~, Wang, J., and Delisle P. "Utopia: a Load Sharing
Facility for Large, Heterogeneous Distributed Computer Systems = Soft-
ware - Practice and Experience, Volume 23, December 1993.

[6]Ousterhout, J., "~l and the Tk Toolkit". Addison-Wesley Publishing.
1994.

