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ABSTRACT | This paper presents an overview of the past,

present and future of the OpenMP application programming

interface (API). While the API originally specified a small set of

directives that guided shared memory fork-join parallelization

of loops and program sections, OpenMP now provides a richer

set of directives that capture a wide range of parallelization

strategies that are not strictly limited to shared memory. As

we look toward the future of OpenMP, we immediately see

further evolution of the support for that range of parallelization

strategies and the addition of direct support for debugging and

performance analysis tools. Looking beyond the next major

release of the specification of the OpenMP API, we expect the

specification eventually to include support for more paralleliza-

tion strategies and to embrace closer integration into its For-

tran, C and, in particular, C++ base languages, which will likely

require the API to adopt additional programming abstractions.
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I. I N T R O D U C T I O N

The OpenMP effort began in 1996 when a handful of
vendors (DEC, HP, IBM, Intel, Kuck and Associates, and
SGI) were brought together by the Accelerated Strate-
gic Computing Initiative (ASCI) of the Department of
Energy (DOE) to create a portable application program-
ming interface (API) for shared memory computers based
on their various implementations of, and extensions to,
the Parallel Computing Forum directives [26]. Vendors do
not typically work well together unless an outside force
compels cooperation. Mary Zosel and the ASCI parallel
tools team provided that compulsion by communicating
that ASCI would only purchase systems with a portable
API for shared memory programming. Their role in the
beginning of OpenMP ensured that it met the needs of HPC
application programmers.

Early public presentations about the project [13] clearly
defined the initial group’s goals:

• to support portable, efficient and comprehensible
shared-memory parallel programs;

• to produce specifications based on common practice
that could be readily implemented;

• to provide a consistent API for Fortran, C and C++ to
the most reasonable extent possible;

• to be lean and mean, i.e., to be only as large
as required to express important control-parallel,
shared-memory programs but no larger;

• to ensure API versions are backwards compatible;
• to support serial equivalence, i.e., for OpenMP pro-

grams to produce the same result whether run serially
or in parallel, to the greatest possible extent.

The first OpenMP specification was released in
November 1997 at SC97. The early OpenMP commu-
nity knew that other parallel programming standardiza-
tion efforts, such as High Performance Fortran (HPF)
and MPI 2.0, suffered from multiyear delays as imple-
mentors struggled to produce robust, application-ready
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Fig. 1. Basic OpenMP.

implementations. Thus, OpenMP by design narrowly
focused on current practice. This focus led to the availabil-
ity of multiple vendor-supported implementations within a
year of the release of the first specification.

Over time, additional vendors and research organi-
zations joined the effort. A nonprofit corporation, the
OpenMP Architecture Review Board (ARB), was created to
prevent any single vendor from dominating the standard.
The current 32 members of the OpenMP ARB continue
to own and to evolve the API to serve the needs of
parallel application programmers. The ARB retains many
of the original goals in its current mission, which is to
standardize directive-based multi-language high-level par-
allelism that is performant, productive and portable. The
OpenMP API now provides a simple and flexible model for
developing parallel applications for platforms ranging from
embedded systems and accelerator devices to multicore
systems. Fig. 1 shows a simple OpenMP example in which
parallel and for directives specify that the basic fork-
join parallelism model should create threads and share
the iterations of the loop across them, with a reduction
performed on the values computed in those threads. This
OpenMP syntax has been valid since the release of the first
C version of the specification.

OpenMP retains all but two of its original goals. Specif-
ically, OpenMP has evolved to support almost all parallel
programming patterns, which necessarily implies a larger
specification than originally envisioned. Further, while ser-
ial equivalence is still achievable, that range of patterns
necessarily leads to many opportunities to deviate from
it. Otherwise, the only change to the original goals is
that the scope of OpenMP has extended beyond shared
memory.

We comprehensively examine the state of OpenMP in
anticipation of the imminent release of version 5.0 of the
API. We first review the evolution of OpenMP through
version 4.5 (Section II). We then provide a more detailed
examination of the philosophy that has guided its evo-
lution (Section III). Next, we briefly review the basic
concepts and mechanisms that support implementation
of the evolving API (Section IV). We then detail some
recent (Section V) and impending (Section VI) additions to
OpenMP. Finally, we discuss and anticipate some possible
directions for its longer term evolution (Section VII).

II. O V E RV I E W O F O P E N M P ’ S
E V O L U T I O N

OpenMP is a living language that reflects the needs of its
many users. Versions adopt new features, major or minor,
for various reasons. Performance motivates the adoption
of some features, while expressiveness or maintainability
motivate others. In general, Language Committee mem-
bers identify potential extensions through interactions with
their customers or users or through knowledge of the activ-
ities in the research community. They bring the potential
extensions to the committee and describe how they will
improve the specification. If the improvement is based on
performance, then they will provide documentation of the
potential performance advantages. Even when the benefit
involves some other facet, they will usually provide evi-
dence that they do not impede performance, particularly
when they are not used. The features are adopted if the
Language Committee is convinced that they improve the
specification.

As hardware capabilities and the range of supported
algorithms have grown, the complexity of the specification
has also expanded. Fig. 2 lists the number of pages of
the versions of the specification (not including front mat-
ter, appendices or indices). The initial OpenMP specifica-
tion [15] (OpenMP Version 1.0 for Fortran) was 40 pages
long. The latest specification [22] (OpenMP 4.5 for For-
tran, C and C++) is 303 pages long.

Fig. 2 details OpenMP’s evolution. Prior to the release
of version 2.5 [18] in 2005, each OpenMP specification
addressed a particular base language (i.e., Fortran or C
and C++). This division simplified writing the text of
the specification, but also created difficulties. First, most
of the people working on the Fortran specifications also
worked on the C/C++ specifications. Thus, the evolution
of the API was hampered since we could not run the two
language committees in parallel. Thus, updates to the spec-
ification were produced slowly relative to their amount of
new material. For example, OpenMP 2.0 for C/C++ [17]
(50 pages) was released almost 4 years after OpenMP 1.0
for C/C++ [16] (45 pages) despite the relatively simple
extensions that it included.

Not only was the progress of the API slower due to
the separate specifications, the separation also allowed the
API to have subtle differences across the languages. The

Fig. 2. OpenMP specification growth across versions.
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process of merging the separate APIs for the languages
into a single specification was a much larger undertaking
than any of us expected. That process required us to recast
OpenMP’s core abstractions much more carefully so they
would apply across the languages. The resulting OpenMP
version 2.5 specification (117 pages) took three years to
create despite adding few new capabilities.

Following the merger of the specifications and the
growth in the popularity of the API, as evidenced by the
expanding membership of the OpenMP ARB, the pace of
the evolution of OpenMP has increased. Today, OpenMP is
no longer a simple API for which its full breadth can be
learned in less than a day. Nonetheless, the core features
of the version 1.0 specifications remain and the goal of
backwards compatibility has largely been achieved.

The OpenMP version 3.0 API specification [19]
(151 pages) added task-based parallelism. This addition
supports irregular parallelism, unlike the original loop-
based constructs. OpenMP 3.0 also provided much more
control over the existing support for structured paral-
lelism. OpenMP version 3.1 [20] (160 pages) extended
the support for structured parallelism, for example, by
adding straightforward control of the number of threads
used at each level of nested parallelism. OpenMP 3.1 also
further refined tasking support. In general, the continued
evolution of OpenMP has advanced existing features while
also expanding the types of parallel algorithms that the
specification supports.

The OpenMP version 4.0 API specification [21]
(248 pages) added support for accelerator-based systems
through its device constructs. Echoing the API’s origi-
nal purpose, OpenMP 4.0 also standardized directives
for single-instruction–multiple-data (SIMD) parallelism,
which had become widely supported by many compilers
but with subtly different semantics. OpenMP 4.5 [22]
(303 pages) added many refinements to those additions.
As we later discuss in detail, OpenMP 5.0 will support
mechanisms to control data placement in complex, multi-
level memory systems. It will also include support for
first-party and third-party tools as well as the customary
major extensions for the types of parallelism that OpenMP
already supports.

In evolving the OpenMP API, we have added features
that address nonuniform memory architectures, more com-
plex concurrency control, irregular algorithms, accelera-
tors, and much more. The specification has not grown due
to a lack of discipline in its designers. Instead, its growth
reflects user demands for new features and how hardware
has changed. In that light, a 7.5X increase in size over the
course of almost 20 years is not surprising.

III. G U I D I N G P H I L O S O P H Y O F O P E N M P

OpenMP’s general philosophy reflects the ARB’s mission
to standardize directive-based multi-language high-level
parallelism that is performant, productive, and portable.
Portability is achieved first and foremost through broad

adoption and support. At the highest level, a directive-
based approach supports productivity through incremental
parallelization and refinement through which user code
remains as close to its original serial version as possible
while still achieving performance goals. Directives allow
the programmer to specify information that a compiler
would otherwise not be able to determine but that is often
known to the user, or that might require complex and
error-prone analysis.

OpenMP provides sensible defaults that often result
in high performance but also allows low-level control
of aspects for which the compiler and runtime may not
deduce high-quality settings. Programmers can thus start
from simple usage of OpenMP directives and incrementally
increase the level of complexity to expose more and more
control over the code transformations applied and paral-
lel execution to achieve higher performance. Despite the
growing complexity of OpenMP directives, the OpenMP
language is designed to maintain this core principle of
directives building on top of each other to support this
incremental program evolution.

As we discussed earlier, OpenMP retains many of its
original goals, which embodied a general philosophy. How-
ever, like the specification, this philosophy has evolved as
OpenMP has expanded to support a wider range of parallel
programming patterns. This section discusses the evolution
of two key aspects of the original philosophy, language
independence and serial equivalence, as well as the issue
of descriptiveness versus prescriptiveness, a philosophical
issue for programming models that has recently received
significant attention.

A. Relationship to Base Languages

Although OpenMP began with separate specifications for
C/C++ and Fortran, as we discussed in Section II, OpenMP
2.5 merged them into a single document. Although that
choice was partly pragmatic—it reduced the effort to move
the base languages forward—the original goal of a con-
sistent API across the base languages, which remains a
key part of OpenMP’s guiding philosophy, was the primary
reason. This language independence is one of OpenMP’s
core strengths since OpenMP has greater portability and
generality, not only across C, C++, and Fortran but also in
its design as a result.

OpenMP, by itself, is not a language. It provides an API
for portably expressing parallelism and concurrency across
three independent base languages. As discussed above,
OpenMP attempts to provide the same experience and
easy interoperability between all three while also being
consistent with the specific base language. Thus, to the
extent possible, OpenMP relies on the base language for
sequential programming constructs. However, some mis-
takenly claim that a directive-based approach is necessarily
limited in scope. In reality, the approach can be Turing
complete and a directive could provide any construct that
is available in a base language.
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Fig. 3. Trivial OpenMP program.

Traditionally, OpenMP has limited its scope in several
ways. However, we are finding that as the API grows and
addresses more programming patterns we must support a
larger set of basic programming constructs. As we discuss
in Section VI-B, one example is the concept of iterators,
which provide structured looping functionality inside the
directives themselves. Closures are another example under
consideration, as we discuss in Section VII-F. Support for
these constructs increases the complexity of the OpenMP
compilation pass so some implementers are resisting their
addition to the API. In general, we are currently debating
the extent to which OpenMP should provide basic pro-
gramming constructs. Nonetheless, we expect the degree
to which OpenMP feels like a general programming lan-
guage to increase.

Regardless, OpenMP will not become a standalone lan-
guage and will continue to rely on base languages to
specify the bulk of the computation that is to be performed.
It will continue to rely heavily on each base language to
define the behavior of a given construct within each thread
of execution or block of code. Further, we are actively
updating OpenMP to support recent base language stan-
dards. OpenMP 4.0 added Fortran 2003 [5] as a normative
reference while OpenMP 5.0 will add Fortran 2008 [7],
C11 [9], C++11 [8], 14 [10], and 17 [11].

The evolution of the base languages in their normative
references complicates OpenMP’s relationship to them.
Before the release of C11 and C++11, C and C++ did not
have any well-defined concept of a data race or threading.
In fact, the ISO C99 standard [6] does not contain the
term “thread” at all, and only contains the word “race” as
part of the term “brace.” In general, the original normative
references did not address parallelization. Thus, OpenMP
has provided all threading and memory model semantics

for a program that used OpenMP constructs. In order to
provide full support for the later C and C++ standards,
which include integrated threading models, acquire and
release memory models and other built-in parallel con-
cepts, OpenMP must ensure that its semantics do not
conflict with those of the base languages. That process
has begun with TR6 [23] (Technical Report 6), which
provided a preview of OpenMP 5.0 and will continue
beyond OpenMP 5.0.

Finally, while a pragma-based approach is natural for
Fortran and C programmers, it is not the most natural one
for C++. Besides complex questions related to support for
parallelism and for lambdas that arise with the latest C++

standards [11], we are beginning to look at other possible
mechanisms for C++, such as attributes.

B. Serial Equivalence

An original goal for OpenMP was to support serial
equivalence as much as possible. As a result, many think
that all OpenMP programs, or at least all correct OpenMP
programs, are guaranteed to produce the same result if
the code is executed in parallel as when the compiler
completely ignores all OpenMP constructs. However, even
OpenMP 1.0 included runtime functions that allow a pro-
gram to depend on the number of threads or the thread
number that executed a region. Thus, trivial programs
could fail to exhibit serial equivalence. Today, many more
opportunities exist to write OpenMP programs that do not
provide serial equivalence.

As OpenMP has evolved, the opportunities to write
programs that do not exhibit serial equivalence have
increased. Fig. 3 provides a simple tasking program in
which the serial version has an infinite loop while the
parallel version will complete quickly, assuming that the
parallel region uses two or more threads and different
threads execute the two tasks. Fig. 4 shows a simple
example for accelerators in which “incremented” is always
printed, while “incremented again” may or may not print
with OpenMP, depending on whether the host and acceler-
ator share memory. Beyond these simple examples, many
constructs and clauses are natively unordered. For example
since reductions operate in an unknown order using them
with floating point types rarely produces serial equiva-
lence.

In general, serial equivalence requires the program or
runtime to limit the possible execution orders. As OpenMP
has grown to support more parallel programming patterns,
the range of execution orders has also grown, which
implies more opportunities not to exhibit serial equiva-
lence or would require more execution order limitations,
which would limit performance. OpenMP tries to avoid
those limitations unless the programmer requires them.
Thus, the philosophy of OpenMP remains to provide con-
structs that can be used to build programs with serial
equivalence when desired but often does not guarantee it
without additional work.
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Fig. 4. Trivial OpenMP accelerator program.

C. Descriptive or Prescriptive Semantics

The high performance community is currently debating
the value of descriptive versus prescriptive program-
ming semantics. Semantics are descriptive if program-
ming constructs describe the computation that should
be performed but provide the compiler and runtime the
flexibility to determine exactly how to perform the compu-
tation. Programming constructs with prescriptive seman-
tics prescribe all details of how to perform the required
computation.

Our position is that the debate is misguided since
it assumes a binary choice between the two types of
semantics. However, almost all languages have constructs
that are descriptive while others are (more) prescriptive.
Specifically within the HPC community, some claim that
OpenACC is descriptive while OpenMP is prescriptive [12],
[27]. While OpenACC provides more descriptive constructs
in its most recent version than OpenMP does, the acc
parallel loop directive is prescriptive since sometimes
users want to prescribe that a loop must be parallelized.

Alternatively, most OpenMP defaults allow the com-
piler freedom to choose details about how the computa-
tion is performed. Even the num_threads clause of the
parallel construct, which many believe to be among
its most prescriptive mechanisms, allows the compiler and
runtime to determine if the number of threads requested
is available. If that many threads are not available, the
compiler and runtime have the flexibility to determine how
many threads to use. So, one may see the issue as where
to place a language, or even its constructs, on a continuum
of possible semantics.

More importantly, choosing one place on that continuum
is overly limited and fails to address the overall preference
of programmers. Specifically, they would prefer that the
compiler and runtime would always “do the right thing”

given a description of the computation to perform. How-
ever, in reality, compilers and runtimes often do not. In
these instances, programmers prefer to have the ability to
override their decisions and to prescribe exactly how to
perform the computation.

For these reasons, the emerging OpenMP philosophy is
to provide mechanisms that describe the computation to
perform and that prescribe as much or as little as the
programmer desires about how to perform it. As a first
step, OpenMP 5.0 will add the loop construct, which
only informs the compiler and runtime that a loop nest
is easily parallelized. In the longer run, we are exploring
mechanisms that specify that the intent of a clause or a
construct is fully descriptive or prescriptive.

IV. C O N C E P T S A N D M E C H A N I C S

OpenMP has expanded greatly in scope and complexity
since its inception, but many of its features build on a
common set of core mechanics and basic concepts that
have changed relatively little over the past 20 years. This
section describes two of the most important building blocks
of OpenMP, outlining and data environments.

A. Outlining

Compiler outlining is the opposite of inlining. The
technique extracts a function from the body of another
function. While conceptually simple, outlining forms the
basis of the most common implementation of most
OpenMP constructs that transform serial code to run in
parallel. Specifically it allows the compiler to create the
functions required as targets for underlying threading
primitives. For example, an implementation may convert
a parallel region like that in Fig. 5 into a new function and
runtime calls as in Fig. 6.

While our example is simplified, the transformation can
outline any block into a function with an appropriate sig-
nature for specific parallelization mechanisms and capture
any necessary state in a compatible data structure or type.
Thus, the user does not need to create wrapper functions
and single-use structures to encapsulate their code in order
to parallelize it. Instead, the compiler does the repetitive
work, while the user determines the appropriate form
and granularity of parallelism. This technique allows the

Fig. 5. Function that uses OpenMP.
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Fig. 6. After outlining.

user to specify something for which compiler analysis is
highly complex while allowing the compiler to handle the
repetitive and error-prone portion of the transformation,
which is the most enduring aspect of the philosophy of
OpenMP, as stated in Section III.

Interestingly, C++11, with lambdas, and C, with the
blocks extension, now provide outlining mechanisms
directly to the user. Thus, these languages can cover many
original OpenMP features (many of the newer OpenMP
features would require additional extensions). We revisit
this technique and its relationship to the base languages in
Section VII when we discuss some potential directions for
the continuing evolution of OpenMP.

B. Data Environments

While outlining supports parallelization, it does not
directly address the issue of data sharing between threads
or tasks. In OpenMP, every task, including implicit tasks
that a loop or device construct creates, has its own data
environment that represents its view of memory and of
state in the OpenMP runtime. The simplest manifestations
of a data environment provide variables that are private
to the task, thread, team or construct in general without
having to refactor variable declarations and initializations
in user code.

OpenMP data environments also include ICVs (Internal
Control Variables), which are a less familiar but equally
important aspect of them. ICVs govern the actions of the
OpenMP runtime. Most users know some of the major
ICVs by their associated environment variables, such as
OMP_NUM_THREADS, and the behavior of environment
variables and data environments are similar. Each new
data environment inherits some values and their behaviors
from the enclosing data environment but is otherwise inde-
pendent of that enclosing environment. Thus, each task
can control the behavior of OpenMP in its dynamic scope
without changing the behavior of OpenMP constructs out-
side of that scope. Thus, the mechanism supports compos-
ability and control.

Overall, OpenMP data environments are an essential
concept that has evolved with OpenMP. For example, we
added the concept of separate data environments for each
device along with the device constructs. This concept
provides a richer memory environment than the original
OpenMP shared memory environment. Specifically, dis-
tinct device data environments can have copies of the
same variable that may share storage–or may not. Thus,
OpenMP provides mechanisms to keep the potential copies
consistent.

V. R E C E N T O P E N M P E X T E N S I O N S

OpenMP 4.0 extends the API to cover two additional major
forms of parallelism: accelerator offload and SIMD vector-
ization. Almost all current systems include hardware that
require these parallel programming patterns. This section
discusses the related extensions as well as several tasking
extensions in OpenMP 4.0 and 4.5.

A. SIMD

Compilers have included technology to auto-vectorize
loops for many years. However, this support has lim-
ited effectiveness for real applications because of the
complexity of determining the potential correctness and
benefit of vectorization (e.g., are loop iterations free
of dependences). These limitations led almost all major
compilers to include implementation-defined vectorization
directives. While frequently spelled ivdep, the semantics
often subtly varied across compilers. Due to the similarity
with the original motivation for OpenMP with respect
to threading directives, we included explicit directives to
exploit SIMD parallelism in OpenMP 4.0.

The simd directive expresses that a given loop nest
has no dependences that would prevent vectorization. The
compiler can then vectorize the loop without performing
any dependence analysis. The directive accepts several
clauses that provide further information and/or restric-
tions to guide vectorization. The simd directive is not
prescriptive as the compiler may choose not to vectorize
the loop (essentially a vector width of one).

Loops with functions pose a particular problem to vec-
torization. If the compiler has the function definition avail-
able then it could inline it to vectorize the loop fully.
In practice, the definition is often in a different compi-
lation unit. Without special treatment, the compiler can
still partially vectorize the loops by repeatedly calling the
scalar function for each element of the vector. A more
efficient solution generates vector variants of the functions
that process multiple elements of the vector in a single
invocation. The compiler can then use these variants in
loops annotated with the simd directive.

OpenMP provides the declare simd directive to
guide generation of vector function variants. The direc-
tive accepts several clauses that prescribe generation of
efficient variants for specific use cases so a function may
be annotated with multiple declare simd directives.
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Fig. 7. OpenMP SIMD vectorization example.

Other clauses generally guide generation of vector variants
(e.g., the uniform clause indicates that a given argument
should be a scalar and not a vector). The compiler can also
generate other variants that may be useful for a specific
target architecture. The simple example in Fig. 7 uses the
OpenMP SIMD directives.

B. Devices

In addition to the pervasiveness of vector units in
modern processors, many systems now include addi-
tional coprocessors or computational accelerators. These
devices include hardware such as graphics processing units
(GPUs), digital signal processors (DSPs), and computation
offload coprocessors like the Intel Xeon Phi coprocessor.
While these hardware devices usually reside in a single
node, they pose a particular challenge for OpenMP because
they frequently use a different instruction set and program-
ming paradigm. Further, they often do not coherently share
memory with the host processors that OpenMP originally
targeted.

OpenMP 4.0 added the target directive and related
directives and routines to address these devices. These
additions provide an offload model that uses the exist-
ing shared-memory model on each device. Since many
accelerators are many-core devices, we added the teams
and distribute directives, which create leagues of inde-
pendent thread teams and share loop iterations among
them. Accelerators can execute these teams efficiently
since synchronization across them is highly restricted while
all OpenMP functionality (except the device constructs)
may be used within each team. The code in Fig. 8 offloads
a simple loop to the default device and divides its work
across teams of threads. The map clauses map data into the
device data environment and, if desired, update the view
of the data on the device (host) before (after) execution of
the target region.

In addition to the map clause on the target direc-
tive, OpenMP provides several other options for device
data management. These options include directives for the
definition of structured target data regions and also for
unstructured transfers or updates between host and device
data. The nowait clause can be used on the target

directive and on these device data management directives
to enable the implementation to treat them as asynchro-
nous tasks. This feature allows overlap of host and device
computation and data transfers. It can also be combined
with task dependences, described in Section V-C, for data-
driven asynchronous execution.

Similarly to simd regions, target regions that contain
function calls are particularly challenging to support.
Unlike with simd regions, however, if the function defi-
nition is not available to the compiler then the compiler
may not generate any variant that can be executed, even
inefficiently, on the device. Thus, in OpenMP 4.0 and 4.5,
if any target region calls a function then the user must
annotate the function definition and its declarations with
the declare target directive. The directive can also
be applied to global variables. The compiler then must
generate a variant of a function or a static lifetime variable
for the target device.

C. Tasking Extensions

OpenMP 3.0 introduced directives to support
asynchronous task parallelism. Those extensions
were carefully designed to support that unstructured
parallel pattern while coexisting with OpenMP’s existing
support for structured parallelism [1]. They generate
tasks with the task construct and synchronize them
through the taskwait construct and barriers. The
taskwait construct specifies a wait on the completion
of child tasks of the current task, and a barrier requires
complete execution of all tasks in the current parallel
region before any threads in the team can continue
execution beyond the barrier. However, these simple
synchronization mechanisms often lack the expressiveness
to expose all available parallelism. OpenMP 4.0 addressed
these limitations with two additional synchronization
mechanisms: task dependences and task groups.

The depend clause in OpenMP 4.0 uses variable names
to indicate dependences between tasks (i.e., restrictions
on their execution order). Fig. 9(a) and (b) shows task
code for a producer-consumer pattern in OpenMP 3.0
and 4.0. The time lines below it illustrate the scheduling
of the tasks on two threads. Task dependences support
fine-grained, data-driven synchronization, as Fig. 9(d)
shows, which allows more flexible scheduling compared
to the coarse-grained synchronization that OpenMP 3.0
supported [Fig. 9(c)]. Fig. 10 compares the parallel

Fig. 8. OpenMP device offload example.
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Fig. 9. Tasking examples without and with dependences.

speedup achieved on a 48-core system. A basic task-
based implementation of Cholesky edges out a highly
optimized version using the loop construct, and using
dependences improves performance more significantly. For
Gauss-Seidel, a basic task-based implementation performs
worse than a version based on the loop construct, but
a version that uses task dependences provides the best
performance.

As stated previously, the taskwait construct requires
that all child tasks of the current task must complete. The
taskgroup construct allows the current task to wait on

Fig. 10. Performance benefit of dependence support.

Fig. 11. Task loop example.

only a subset of its children, while others may continue
executing beyond the synchronization point. Also, the
construct requires that all descendant tasks of that subset
complete execution, which we call deep synchronization.
Because some children of the current task can be excluded
from a task group, those tasks can perform long-running
background activities that proceed alongside successive
computational kernels.

With OpenMP 3.0 tasking support, a user could man-
ually decompose a loop into chunks that OpenMP tasks
execute. This cumbersome and error-prone manual trans-
formation is inconsistent with the philosophy of OpenMP.
Thus, OpenMP 4.5 added the taskloop construct to
automate it. Fig. 11 uses the construct to parallelize a saxpy
operation. The num_tasks clause specifies the number
of tasks to create for the loop. Alternatively, users specify
the minimum number of loop iterations per task with the
grainsize clause. OpenMP 4.5 also includes a combined
taskloop simd construct to use SIMD parallelism in the
generated tasks.

D. Cancellation

OpenMP 4.0 introduced cancellation, which ends an
OpenMP region early to enable efficient error handling
and more efficient algorithms. When a thread encounters
a cancel construct, it cancels execution of the inner-
most associated region (as indicated by a parallel,
sections, for or do clause) or associated set of tasks
(as indicated by the taskgroup clause).

Cancellation must occur with well-defined semantics so
users can ensure that their data is in an expected state.
Since the user can manage the state immediately before
the cancel construct, the thread that encounters it imme-
diately proceeds to the end of the canceled region (e.g.,
the end of the current task for the taskgroup clause).
Other threads must encounter a cancellation point, prior
to which the user can manage state, in order to process
the cancellation. Cancellation points are implied at barriers
and are explicitly indicated by cancellation point
and cancel constructs. If a thread observes that another
thread has canceled the associated region at a cancellation
point, it also proceeds to the end of the canceled region
(e.g., the end of the current task). With the taskgroup
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Fig. 12. Cancellation example.

clause, tasks that have not begun to execute are simply dis-
carded since they cannot have state from partial execution.

Fig. 12 shows how to cancel a binary tree search when
the value is found. Without the OpenMP directives, the
code recursively examines children nodes and stops if the
value of the current tree node matches the search value.
With OpenMP tasking, the subtree searches execute in
parallel. Without cancellation, once a task finds the search
value, it does not generate any more tasks but the other
branches of the parallel search continue. With cancellation,
any executing tasks complete their check but any gener-
ated tasks that have not begun execution (including those
generated by the executing tasks) are discarded so that
unnecessary work is greatly reduced while still executing
the search in parallel.

VI. N E X T E V O L U T I O N A R Y S T E P

We will release OpenMP 5.0 in November 2018. We have
already made substantial progress on its content, as
TR6 [23] demonstrates. Based on TR6, OpenMP 5.0 will
increase the page count of the specification more than any
prior version. However, most new pages will detail addi-
tions to OpenMP that support performance analysis and
debugging tools that we do not discuss further. Nonethe-
less, OpenMP 5.0 will also include several extensions to the
user-level API that significantly enhance its support for a
wide range of architectures. We now discuss many of those
extensions.

A. Device Extensions
While OpenMP introduced support to offload

computation regions to target devices in version 4.0
and subsequently expanded that support significantly
in 4.5, the space is changing quickly. Thus, we have
already adopted several extensions and refinements for
OpenMP 5.0 including changes that greatly simplify the
use of functions in those regions. Further, a new general
mechanism to specify application-specific requirements
will enable straightforward use of unified memory spaces
across devices. Nonetheless, we have also adopted a
unique deep-copy mechanism that will significantly
improve usability on systems that do not provide unified
memory spaces. Importantly, we expect this deep-copy
support will often provide performance advantages even
on systems that do provide them.

Many offload models, such as CUDA and OpenCL,
require function annotations. However, OpenMP 5.0 will
ease the use of functions on devices by relaxing its annota-
tion requirements. OpenMP 5.0 will eliminate the require-
ment to annotate function declarations. Essentially, the
compiler must assume that a device variant will be avail-
able at link time. Also, the compiler must automatically
generate a device variant for any function with a definition
in the same translation unit as a call from a target
region. Essentially, the definition implicitly includes the
declare target annotation. Because these changes sig-
nificantly improve usability, many compilers have already
implemented them and they have allowed entire large
codebases (particularly in C++ due to the pervasiveness
of templates) to offload to devices using OpenMP without
a single explicit declare target directive; other models
require hundreds or thousands of annotations to compile
them at all.

In order to assume coherent memory between the host
and a target device, the user must assert to the compiler
that their code requires that support. Given this assertion,
if the code is run on a device without that support, it
may exhibit unspecified behavior (i.e., the code is broken).
Overall, these assertions are a contract between the appli-
cation and the compiler, which is a general mechanism
for which unified memory spaces are just one instance.
Thus, OpenMP 5.0 will provide a new requires directive
that allows OpenMP to specify a set of rules for a given
requirement and users to specify that their code conforms
to those rules. This directive supports the definition of
subsets of the OpenMP specification; one 5.0 subset will
support systems that do not require memory to be mapped
explicitly into a data environment for target devices. Effec-
tively, the user can assume shared memory between the
host and the devices. For example, the code in Fig. 13
is only valid for systems with a unified view of memory.
It is nonconforming in OpenMP up to 4.5 but will be
correct on systems that meet the requirement. Importantly,
the requires directive applies to an entire translation
unit, which offers usability benefits similar to the implicit
declare target annotations.
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Fig. 13. Requiring unified memory.

The deep-copy support in OpenMP 5.0 will simplify
the use of pointer-based data structures like the linked
list in Fig. 13 on systems that do not provide coherent
unified memory. With OpenMP 4.5, the user must map
each piece of the structure and must then assign the
pointers on the device to those pieces either with explicit
assignments or with further mapping actions. The user
often must repeat this verbose, complex and error-prone
code sequence every time an instance of the data structure
is needed on the device. Instead, the declare mapper
directive in OpenMP 5.0 will allow the user to describe
how to map an instance of the data structure including
the targets of pointers. The user can then use this defi-
nition in a map clause whenever an instance of the data
structure is needed on the device. Overall, the descriptions
in the declare mapper directive are simpler than the
OpenMP 4.5 mechanism and eliminate the repetition. Fig.
14 shows an example that maps a multi-level data struc-
ture with the declare mapper directive. The directive
in the Vec class uses a map clause to describe how to
map the data that is the target of the pointer member
for any instance of the class. This version works for any
target platform, including those that do not support unified
memory.

We plan to refine the deep-copy mechanism further.
Specifically, we will provide a mechanism that can replace
any phase of the mapping process with user-defined
expressions or functions written in the base language. This
mechanism, which will provide equivalent functionality
to data serialization and deserialization for transmission
over a network, will support mapping of arbitrary, complex
data structures. Further, it will enable data-dependent
data transformations that support highly efficient kernel
computations. We expect OpenMP 5.1 to include this func-
tionality.

Fig. 14. User-defined mapper example.

Fig. 15. Iterated task dependences.

B. Iterators

Many OpenMP clauses accept lists of parameters. In
OpenMP 4.5 or earlier, while many OpenMP clauses accept
expressions, the expressions (but not their values) must
be fully determined at compile time. Thus, the number of
elements in each list is static and, for example, the depend
clause can specify a dependence on multiple elements of
an array but the number of elements (or array sections)
must be known at compile time. This requirement can
prevent the expression of some algorithms or make their
expression more complex. For example, if a corner cell
has fewer dependences than an inner cell then the user
may need to modify the base language code to provide
separate annotations for each case. Further, the limitation
can require the use of long error-prone lists even when the
number of list elements is static. This limitation arises from
the lack of general programming constructs in OpenMP
directives, which we plan to reduce as discussed in
Section III-A.

To overcome this lack of expressiveness, OpenMP will
add the concept of iterators. This mechanism can iterate
through a range of values to produce list-items at runtime.
Thus, a clause can have a dynamic number of list elements.
Fig. 15 shows how this feature supports a task construct
with a variable number of dependences.
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C. Further Evolution of Tasking Support

OpenMP 5.0 continues to evolve the tasking model
to address use cases. Task reductions, task affinity,
and additional forms of task dependences enhance per-
formance and ease of use. Prior to OpenMP 5.0, lack
of support for explicit task reductions required users to
implement their own reductions by collecting and later
combining per-thread partial values, passing partial values
through the tree of tasks, or using locks or atomics that
serialize those operations. The task_reduction clause
allows a reduction over a task group, and the reduction
clause is available on task loops. The in_reduction
clause appears on tasks that participate in the reduction,
which can include target tasks that offload computation or
transfer data to devices.

Support for task dependences is extended in two new
ways. First, use of iterators is allowed in the depend
clause, as described previously in Section VI-B. Second,
a new dependence type allows a set of tasks to com-
mute with respect to one another with the constraints
that their executions are mutually exclusive and that they
satisfy any dependences with respect to tasks outside the
set.

Like task dependences, task affinity indicates the data
used by a task. However, task affinity is a hint that guides
the scheduling of tasks to threads, rather than enforcing an
ordering among the threads. Tasks that use the same data
can be scheduled to the same thread or to threads that
execute on cores in the same NUMA domain. An advanced
runtime may also use the information to tune work stealing
for better locality. Future versions of OpenMP may apply
the affinity clause to other constructs besides the task
construct.

D. Memory Allocation

Memory hierarchies will become deeper in future sys-
tems with the use of technologies such as high-bandwidth
memory and nonvolatile RAM. Each of these technologies
has a different programming interface and distinct per-
formance characteristics. Programming mechanisms must
address these differences and support intelligent data
placement since the fastest resources typically have limited
capacity. To enable programmability of these technologies
and portability across platforms, OpenMP 5.0 will include
a consistent and portable interface for placement within
the memory hierarchy.

A memory space is a memory resource that is available in
the system. Memory spaces differ in their characteristics,
for instance in bandwidth or capacity. OpenMP will define
intuitive predefined memory spaces that map to memory
resources in HPC systems. An allocator object allocates and
frees memory from the resources of the memory space
to which it is associated when it is created. OpenMP 5.0
will provide predefined memory allocators that match its
predefined memory spaces. For example, the predefined
memory allocators can select a memory space with large

Fig. 16. High-bandwidth memory allocation.

capacity, high bandwidth or low latency, or local to a
particular thread or thread team.

OpenMP 5.0 will include the omp_alloc and
omp_free routines as supersets for malloc and free.
The allocate directive can specify allocation properties
of variables that are not allocated through an API call
such as global or stack variables. The allocate clause
will directly specify the use of an allocator for any con-
struct that accepts data sharing clauses. It enables the
allocation of private variables in a particular mem-
ory space. Fig. 16 illustrates the use of the predefined
omp_high_bw_mem_alloc allocator to allocate memory
from the high bandwidth memory space.

In order to support rapid adaptation of existing pro-
grams to a specific memory configuration, the predefined
allocators have type omp_allocator_t * and can be
used as regular pointers. Thus, they can be passed by
argument and once memory allocation uses the OpenMP
API function, these code places do not have to be
modified again just to use a different memory space;
the allocator passed to the function only needs to be
adjusted. Fig. 17 illustrates how to select the memory
policy that a function used to allocate the private array
some_array.

Besides predefined allocators, OpenMP 5.0 will support
creation of custom memory allocators through which the
user can specify additional traits. Current traits can specify
the desired memory alignment, the maximum pool size,
the fallback behavior when failing to allocate memory and
some hints that specify the context in which the memory
is expected to be used or the expected contention on
the allocator. Fig. 18 shows an example that creates a
custom allocator. This allocator returns memory from the
default memory space with 64-byte alignment that only the
thread that allocates the memory can access. This allocator
can then be used in the previously presented API calls,
directives and clauses.

Fig. 17. Separate memory selection and allocation.
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Fig. 18. Custom memory allocator.

VII. L O N G E R T E R M D I R E C T I O N S

While OpenMP 5.0 is clearly a major step in the evolution
of OpenMP, we already know that we will not address every
issue that remains. We plan to release a minor revision of
5.0 in November 2020 (nominally, it will be OpenMP 5.1)
that we again do not expect to address every open issue.
We have established a five-year cadence of major releases
of the OpenMP specification, which we plan to continue.
In this section, we anticipate the long term evolution
of OpenMP; we may realize some of these directions in
OpenMP 5.1 but we will defer many of them to OpenMP
6.0 or later.

A. Pipelining of Target Data Transfers

Data transfers between host and device memory is
a common bottleneck for heterogeneous applications.
A basic optimization overlaps computation with those
data transfers. Further, devices often have limited memory
capacities, which leads to optimizations that divide the
computation into pieces and stage in the data of upcoming
pieces and stage out the data of preceding ones while
the current piece is executed. While this pipelining of
data transfer and computation is well understood, manual
transformations to implement it involve many complex and
error-prone source code changes.

Fig. 19. Pipelining example.

Fig. 20. Pipelined versus buffered data transfers.

We are developing interfaces that associate data trans-
fers with loop iteration spaces and, thus, support auto-
mated pipelining. Fig. 19 shows an example that pipelines
a stencil computation. The map clauses use the distributed
loop’s iteration variable to indicate that the compiler can
divide the arrays along their first dimension and that
three elements along that dimension of the input array are
required to compute each element along that dimension of
the output array. Thus, the compiler can transform the loop
to perform chunks of the computation while pipelining the
data.

Fig. 20 compares a prototype of this interface to a naive
version that does not pipeline the loop [2]. We present two
pipelining strategies. Pipelined uses a buffer of the same
size and layout as the naive version so it does not save
memory space but splits the computation to overlap trans-
fers. Pipelined-buffer uses smaller buffers and transforms
the accesses in the loop to decrease the memory capacity
that is required. In some cases, particularly the 3dconv
and stencil kernels, the buffered version’s greater locality
actually improves performance. For the quantum chromo-
dynamics kernel however it loses about 20% performance
compared to using the full amount of memory, but allows
much larger problems to be run than otherwise fit on the
device.

B. Memory Affinity

While OpenMP 5.0 will specify task affinity based on
memory locations as discussed in Section VI-C, a longer
term goal is to support more general memory affinity.
Intuitive interfaces for this complex problem are difficult
to specify. Nonetheless, we have explored interfaces that
associate data to computation and then appropriately
locate, transform or replicate the data based on the
distribution of the computation of existing mechanisms in
OpenMP [24], [25].

Fig. 21 shows a more recent direction that specifies how
to partition computation and to map the associated data
range to the threads of a parallel region and then to a
set of devices. This example partitions the GEMM loop into
2-D tiles by columns across sockets and rows across devices
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Fig. 21. Possible memory affinity interface.

associated with a given socket. Extensions like this require
careful consideration due to their potentially large number
of changes, and high complexity, but the information can
support significant optimizations. Beyond providing affin-
ity information, these annotations are sufficient to allow
for cross-device coscheduling across nonshared-memory
devices.

Fig. 22 shows performance results from a prototype
implementation across five benchmark kernels in terms of
speedup over a baseline OpenMP static schedule that uses
all cores. The annotations and scheduling improvements
that the information enables can increase performance
substantially. The optimization space being explored in the
figure compares static scheduling to an adaptive scheduler
that attempts to predict the best partitioning based on past
performance. The CPU adaptive results represent using the
adaptive scheduler on the same resources as the baseline.
The results also vary the devices across which the runtime
system can distribute computation and data. It can use only
the CPU cores, only a set of one to four NVIDIA c1060
GPUs, or both. The same GEMM code can target all of these
options by changing runtime parameters.

The amount of expressive power this kind of extension
can provide is significant, but so is the complexity and the
burden on the programmer who is trying to use it. We
intend to continue exploring this space in the future to
provide an appropriate long-term solution.

C. Memory Allocation Extensions

While OpenMP 5.0 will introduce the major building
blocks for memory allocation support (memory spaces,
allocators and APIs) we will extend this support. One such
direction will be to allow users to determine the memory
resources of a particular system and to create memory
spaces with a more precise description and not just to
rely on predefined ones. The number of allocator traits
will increase to allow users to specify a larger range of

behaviors. For example, we envision traits that support:
memory pinning; distribution of allocations across NUMA
domains; fixed-object allocations (i.e., where all allocation
invocations have the same size); and allocators with stack
semantics. We will also eventually improve support of
allocation of variables specified in map clauses, as well as
C++ variables generally.

D. Free-Agent Threads

Currently, only threads of the parallel region in which
an explicit OpenMP task is generated can execute that
task. This limitation leads to the unintuitive (if simple)
requirement that pure tasking programs in OpenMP must
first start a parallel region and then must ensure that
only one thread executes the code that generates the tasks,
for example, by using a single region. This limitation
can restrict parallelism in more complex applications since
other threads (resources) may be idle and available to
execute the tasks.

We are exploring a concept of free-agent threads to
overcome this limitation. The mechanism would allow any
thread that is not assigned to a team to execute any explicit
task. It would fully eliminate the limitation; all threads
could execute explicit tasks that are generated in the initial
thread without requiring an explicit parallel region. We
need to resolve many details, such as the return values for
runtime routines such as omp_get_thread_num when
executed by a thread that is not part of the team. Since
this change will represent a major change in the OpenMP
execution model, we do not expect to adopt it before
OpenMP 6.0.

E. Event-Based Parallel Programming Pattern

One parallel programming pattern that OpenMP does
not yet support is the event-driven model that many
interactive applications and networking servers use. In this
model, one or more threads run continuously in an event
loop to observe external (e.g., user) actions. Other threads
then perform the computation that the actions trigger to
minimize response times. This event-based pattern natu-
rally suits a task-based model.

OpenMP’s current task model does not suit the event-
based pattern since it requires the team of the thread
that generates a task to execute that task. To support this
pattern, OpenMP needs a new capability to allow a thread
to direct work toward a team other than its own. This capa-
bility would allow the event thread to remain responsive
as other teams concurrently handle event processing. In
addition, a mechanism that creates reusable tasks could
further improve response times.

F. Enabling Language-Level Outlining

As Section IV-A discussed, outlining, or extraction of
code into functions by the compiler, is a core mechanism
used to implement OpenMP. Some base languages provide
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Fig. 22. Performance benefit of memory partitioning/affinity.

outlining mechanisms in the form of closures or lambdas.
The writers of libraries and parallel frameworks find these
constructs attractive since they can describe abstract pat-
terns and behaviors that then are passed an arbitrarily
complex code sequence and associated data. Frameworks
like Kokkos [3] and RAJA [4] exploit this mechanism to
create flexible looping constructs, like the one in Fig. 23,
that can be compiled for host devices, targets or other
parallel backends, depending on compile time arguments.
These mechanisms pose challenges that OpenMP 5.0 will
begin to address.

While OpenMP must evolve to support mechanisms such
as lambdas, Fortran users of OpenMP currently cannot
exploit the capabilities that we will provide. Although
many OpenMP implementations use outlining, they do
not expose the resulting functions to the user. However,
exposing them could provide many benefits, including a
mechanism to support closures in Fortran.

We could extend the task directive to create a form
of “callable task” or OpenMP closure object that would be
portable across C, C++ and Fortran. The extension would
significantly reduce the work required to make an arbitrary
callable object with state in C and Fortran. It would also
support library implementations with functionality like
that of Kokkos and RAJA that all three languages could
use. Challenges remain, however, such as to integrate the
functionality with existing OpenMP constructs and how
to make it as efficient as possible at runtime. A simple
and portable solution generates a structure, or derived
type, and a function pointer. This solution easily integrates

Fig. 23. RAJA loop body example.

with established libraries, but will likely perform poorly for
frequently called functions. Despite the challenges, giving
users control of outlining could be a major step forward for
OpenMP.

VIII. C O N C L U S I O N

Over 20 years have passed since we released the first
OpenMP specification. It has become a mature program-
ming API that continues to support Fortran, C, and C++

as base languages. In its maturation, the size of the API
and its specification has grown substantially as we added
support for additional parallel programming patterns. Its
underlying philosophy has also evolved although we retain
many of its core principles. Most of all, the primary purpose
of the API continues to be to allow users to specify informa-
tion about their computation that they easily know but that
would require complex compiler analysis to deduce while
relying on the compiler to implement repetitive, tedious
and error-prone mechanisms that exploit that information
in a way that can be carried from compiler to compiler.
As of this writing, the OpenMP compilers page [14] lists
16 compilers, nine of which support at least a significant
portion of OpenMP 4.5.

In this paper, we discussed the 7.5× increase in the size
of the OpenMP specification over the course of its lifetime.
We provided a glimpse into the evolution of its guiding
principles as well as some of the features that the most
recent versions added. We also discussed some of the key
programming features that OpenMP 5.0 will add and that
are under consideration for versions beyond it. These plans
will result in a specification that supports essentially every
major parallel programming pattern and the latest base
language standards.
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