
Lecture 1: Introduction to Parallel Computing
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele, CMSC714

A little bit about me …

• Ph.D. from the University of Illinois

• Spent eight years at Lawrence Livermore National Laboratory

 2

• Started at the University of Maryland in 
August



Abhinav Bhatele, CMSC714

Introductions

• Name

• MS or PhD / Department

• Area of research

• Why this course?

• Something interesting/ unique about yourself

 3



Abhinav Bhatele, CMSC714

This course is

• An introduction to parallel computing

• Will cover programming models, architectures, tools, systems issues, algorithms and applications

• A qualifying course for MS/PhD

• Work expected:

• Two programming assignments

• Mid-term

• Group project (3 students per group)

• Classroom participation

 4



Abhinav Bhatele, CMSC714

The need for high performance computing

 5

https://www.nature.com/articles/nature21414

Drug discovery



Abhinav Bhatele, CMSC714

The need for high performance computing

 5

https://www.nature.com/articles/nature21414

Drug discovery

Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml



Abhinav Bhatele, CMSC714

The need for high performance computing

 5

https://www.nature.com/articles/nature21414

Drug discovery

Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Study of the universe

https://www.nas.nasa.gov/SC14/demos/demo27.html



Abhinav Bhatele, CMSC714

Why do we need parallelism

• Make some science simulations feasible in the lifetime of humans

• Either due to speed or memory requirements

• Provide answers in realtime or near realtime

 6



Abhinav Bhatele, CMSC714

What is parallel computing?

• Does it include:

• Grid computing

• Distributed computing

• Cloud computing

• Does it include:

• Superscalar processors

• Vector processors

• Accelerators (GPUs, FPGAs)

 7



Abhinav Bhatele, CMSC714

Parallel Architecture

• A set of nodes or processing elements connected by a network. 

 8

https://computing.llnl.gov/tutorials/parallel_comp



Abhinav Bhatele, CMSC714

Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly

 9

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links 
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links 
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.

Torus Fat-tree Dragonfly



Abhinav Bhatele, CMSC714

Memory and I/O sub-systems

• Similar issues for both memory and disks (storage):

• Where is it located?

• View to the programmer vs. reality

• Performance considerations: latency vs. throughput

 10



Abhinav Bhatele, CMSC714

System software: Programming models

• Shared memory/ address-space

• Explicit: Pthreads

• Implicit: OpenMP

• Distributed memory

• Explicit: MPI

• Implicit: Task-based models (Charm++)

 11

User code

Parallel runtime

Communication library

Operating system



Abhinav Bhatele, CMSC714

Performance and debugging tools

• Debugging parallel programs is challenging

• Performance analysis and tuning is critical but hard

 12

https://computing.llnl.gov/tutorials/totalview/

https://vampir.eu/tutorial/manual/performance_data_visualization

Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Interactive Investigation of Traffic Congestion on
Fat-Tree Networks Using TREESCOPE

H. Bhatia1, N. Jain1, A. Bhatele1, Y. Livnat2, J. Domke3, V. Pascucci2, and P.-T. Bremer1,2

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
2Scientific Computing & Imaging Institute, The University of Utah, Salt Lake City, UT, USA

3Tokyo Institute of Technology, Tokyo, Japan

[0, 3.0 TB]
3000

2000

1000

0 2.0 TB1.0 TB 3.0 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 08:56:12, 2016.09.02 09:15:42]

400 GB
300 GB

100 GB
0

500 GB

200 GB

[0, 1.8 TB]
3000

2000

1000

0 1.0 TB500 GB 1.5 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 22:16:23, 2016.09.02 22:32:53]

400 GB
300 GB

100 GB
0

500 GB

200 GB

Figure 1: TREESCOPE enables interactive and unified exploration of network traffic for large-scale fat-tree networks, including the visual

analytics of network counters, job queue logs, job placements, and routing scheme. The figure shows the network traffic during the execution

of the same application using two routing schemes, ftree routing (left) and SAR scheme (right). The visualization shows temporal and

distributional statistics (top), and detailed per-link traffic on half of the 1296-node fat-tree cluster in use (bottom). The free routing distributes

the traffic more uniformly (average traffic maps to yellow) and is about 15% faster than the SAR scheme. TREESCOPE helps users explore

the data and formulate hypotheses on the causes for performance degradation, such as the presence of hotspots in the traffic on the right.

Abstract
Parallel simulation codes often suffer from performance bottlenecks due to network congestion, leaving millions of dollars of

investments underutilized. Given a network topology, it is critical to understand how different applications, job placements,

routing schemes, etc., are affected by and contribute to network congestion, especially for large and complex networks.

Understanding and optimizing communication on large-scale networks is an active area of research. Domain experts often

use exploratory tools to develop both intuitive and formal metrics for network health and performance. This paper presents

TREESCOPE, an interactive, web-based visualization tool for exploring network traffic on large-scale fat-tree networks.

TREESCOPE encodes the network topology using a tailored matrix-based representation and provides detailed visualization

of all traffic in the network. We report on the design process of TREESCOPE, which has been received positively by

network researchers as well as system administrators. Through case studies of real and simulated data, we demonstrate how

TREESCOPE’s visual design and interactive support for complex queries on network traffic can provide experts with new

insights into the occurrences and causes of congestion in the network.

CCS Concepts
•Human-centered computing ! Visualization application domains; Visual analytics;

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Abhinav Bhatele, CMSC714

Systems Issues

• Operating system noise

• Network congestion

• Congestion-avoiding routing

• Parallel I/O

• Job scheduling:

• Interference from other jobs

 13



Abhinav Bhatele, CMSC714

Parallel algorithms and applications

• Parallel Matrix Multiplication

• Parallel Sorting

• N-body calculations

• Discrete event simulations

 14



Abhinav Bhatele, CMSC714

Parallel algorithms and applications

• Parallel Matrix Multiplication

• Parallel Sorting

• N-body calculations

• Discrete event simulations

 14

• Molecular dynamics

• Computational cosmology

• Weather and climate modeling

• Discrete-event simulation



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


