
Lecture 6: Task-based Models and Charm++
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele, CMSC714

Summary of last lecture

• Shared-memory programming and OpenMP

• Fork-join parallelism

• OpenMP vs MPI: ease of programming, performance
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Task-based programming models

• Describe program / computation in terms of tasks

• Tasks might be short-lived or persistent throughout program execution

• Notable examples: Charm++, StarPU, HPX, Legion

• Attempt at classification: https://link.springer.com/article/10.1007/s11227-018-2238-4
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Charm++: Global view
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User View System View
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Key Principles

• Programmer decomposes data and work into objects

• Decoupled from number of processes or cores

• Runtime assigns objects to physical resources (cores and nodes)

• Each object can only access its own data

• Request data from other objects via remote method invocation: foo.get_data()

• Message-driven execution
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Hello World in Charm++
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Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

module hello {

  array [1D] Hello {
    entry Hello();
    entry void sayHi();
  };

};

http://charmplusplus.org/tutorial/ArrayHelloWorld.html
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Hello World in Charm++
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Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

module hello {

  array [1D] Hello {
    entry Hello();
    entry void sayHi();
  };

};

void Hello ::sayHi() {
  CkPrintf("Hello from chare %d on processor %d.\n”, thisIndex, 
CkMyPe());
}

http://charmplusplus.org/tutorial/ArrayHelloWorld.html
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Hello World in Charm++
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Charm++ Tutorial: http://charmplusplus.org/tutorial/ArrayHelloWorld.html

module hello {

  array [1D] Hello {
    entry Hello();
    entry void sayHi();
  };

};

void Hello ::sayHi() {
  CkPrintf("Hello from chare %d on processor %d.\n”, thisIndex, 
CkMyPe());
}

Main::Main(CkArgMsg* msg) {
  numElements = 5; // number of elements

  CProxy_Hello helloArray =
          CProxy_Hello::ckNew(numElements);

  helloArray.sayHi();
}

http://charmplusplus.org/tutorial/ArrayHelloWorld.html
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Over-decomposition and virtualization

• Create lots of  “small” objects per physical core

• Objects grouped into arrays: 1D, 2D, …

• System assigns objects to processors and can migrate objects between physical 
resources

• Facilitates automatic load balancing
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Questions

• What are some of its limitations?

• Could we talk through an example where using the structured dagger would be 
relevant?

• Can you still have bottlenecks with message passing? What would an example of this 
look like?
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The Charm++ Programming Model
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Questions

• Is there an alternative to the checkpointing discussed? Some way to add redundancy 
to the parallel computation so that it is fault tolerant? Or is this generally not worth 
doing? Is there anything complex about the implementation of the checkpointing 
process?

• Are the examples (e.g., Barnes-Hut simulation) standard benchmarks in HPC 
literature, or selected specially for making Charm++ look good? If these are standard, 
why are they standard? Just due to their popularity?
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Parallel Programming with Migratable Objects: Charm++ in Practice
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