High Performance Computing Systems (CMSC714)

Lecture 7: Single Node Architectures

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND



Summary of last lecture

® Task-based programming models and Charm++
e Key principles:
* Over-decomposition, virtualization

* Message-driven execution

e Automatic load balancing, checkpointing, fault tolerance
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von Neumann architecture

Central Processing Unit

Control Unit
Input Arithmetic/Logic Unit Output
Device Device

Memory Unit

https://en.wikipedia.org/wiki/Von_Neumann_architecture
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UMA vs. NUMA

CPU 2 CPU 3
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Uniform Memory Access Non-uniform Memory Access

https://frankdenneman.nl/2016/07/07/numa-deep-dive-part- | -uma-numa/
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UMA vs. NUMA

CPU 2 CPU 3
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Uniform Memory Access Non-uniform Memory Access

https://frankdenneman.nl/2016/07/07/numa-deep-dive-part- | -uma-numa/
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Fast vs. slow cores

® Intel Core line (Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, ...)
e AMD processors
® |BM Power line

® Slower cores: Low frequency, low power

* |IBM PowerPC line (440,450,A2, ...)
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Intel Haswell Chip
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BQC Chip
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® A2 processor core
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e Runs at |.6 GHz

e Shared L2 cache
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® Peak performance per core:
* 128 Glop/s b el G Rl T Sl :"iﬁ

® Jotal performance per node:

204.8 Gflop/s
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® NVIDIA: Fermi, Kepler, Maxwell,
Pascal,Volta, ... " GB/SI
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® |ntel 6.0 GB/s Read
NVM 2 > GB/s Write
® Figure on the right shows a single TF 42 TF (6x7 TF) <—>» HBM/DRAM Bus (aggregate B/W)
) HBM 96 GB (6x16 GB) <4—Pp» NVLINK
node of Summit @ ORNL DRAM 512 GB (2x16x16 GB) <—> X-Bus (SMP)
NET 25 GB/s (2x12.5 GB/s) PCle Gen4
MMsg/s 83 <—» EDRIB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCle, IB) are bi-directional.
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PCIl Express 3.0 Host Interface
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SM

L1 Instruction Cache

LO Instruction Cache LO Instruction Cache
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

® Each Volta Streaming Multiprocessor (SM) has:

Lb/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU Lb/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

LO Instruction Cache LO Instruction Cache

® 64 F P 3 2 C O re S Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

e 64 INT32 cores

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
PY 3 2 FP6 4 cores FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE
o 8 Ten SO r’ CO res FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LDI LD/ LD/ LD/ LD/ LD/ LD/ LD/ LDI
SFU SFU

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
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Questions

The IBM Blue Gene/Q Compute Chip

® Why are the L2 caches sitting on the center of the chip? Why not vise-versa? Is this a
standard design!

® Why is this paper, Blue Gene/Q, or A2 processor, so important!

® Are there new significant prefetching methods other than list and stream prefetching
in recent architectures!?

® |s "multiply add pipeline” a commonly used operation, or is the architecture just
trying to increase its FLOP count? What are other commonly used operations that
get pipelined in other architectures?
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Questions

Debunking the 100X GPU vs. CPU myth

® The paper is from 2010 and this is rather old. It seems that GPUs have evolved a lot in the last decade. How
would it compare today?

e The GPU in the first paper is |.5 years older than the CPU, what would be the results if they were both from the same time? How does Moore's
law apply to the GPUs, do they get 2x faster every 2 years!

e GPUs have several types of caches (shared buffer, constant cache, texture cache). How should these caches be
differentiated (chosen) for a purpose!

® Where did the "myth" come from? Is the CPU more difficult to optimize?
® Have the features, recommended by the author, become true in current CPUs/GPUs?

* Why radix sort is chosen as a benchmark metric, while it's not used as the default algorithm in most
programming languages? (java has mergesort, python timsort, C++ implements quicksort) Is it used more in

HPC?

® The paper says they discarded the delays related to memory bandwidth because GPU have 5x faster b/w than
CPU.What would be the approximate real life speeds with the memory included? How important is that to
optimize bandwidth!?
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Questions?
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