High Performance Computing Systems (CMSC714)



#### Lecture 12: Analysis/Visualization Tools

Abhinav Bhatele, Department of Computer Science



#### Summary of last lecture

- Performance analysis
  - Identify performance bottlenecks, anomalies
  - Measurement, analysis, visualization tools
- Tracing and profiling
- Calling context trees, graphs



#### MPI trace visualization





### Projections Performance Analysis Tool

- For Charm++/Adaptive MPI programs
- Instrumentation library
  - Records data at the granularity of chares (Charm++ objects)



#### Time Profile







## Usage Profile & Histogram View





## Usage Profile & Histogram View





## Outlier Analysis



#### Scripting for multi-run comparisons





#### Hatchet

- Hatchet enables programmatic analysis of parallel profiles
- Leverages pandas which supports multi-dimensional tabular datasets
- Create a structured index to enable indexing pandas dataframes by nodes in a graph
- A set of operators to filter, prune and/or aggregate structured data

#### Dataframe operation: filter

|  |         | name    | nid | node    | time | time (inc) |         |         |     |         |      |            |
|--|---------|---------|-----|---------|------|------------|---------|---------|-----|---------|------|------------|
|  | node    |         |     |         |      |            |         |         | A   |         |      |            |
|  | main    | main    | 0   | main    | 40.0 | 200.0      |         |         |     |         |      |            |
|  | physics | physics | 1   | physics | 40.0 | 60.0       |         | name    | nid | node    | time | time (inc) |
|  | mpi     | mpi     | 2   | mpi     | 5.0  | 20.0       | node    |         |     |         |      |            |
|  | psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       | main    | main    | 0   | main    | 40.0 | 200.0      |
|  | solvers | solvers | 4   | solvers | 0.0  | 100.0      | physics | physics | 1   | physics | 40.0 | 60.0       |
|  | hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       | psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
|  | mpi     | mpi     | 6   | mpi     | 10.0 | 35.0       | hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
|  | psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       | psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |
|  |         |         |     |         |      |            |         |         |     |         |      |            |

```
gf = GraphFrame( ... )
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
```



# Graph operation: squash

|         | name    | nid | node    | time | time (inc) |
|---------|---------|-----|---------|------|------------|
| node    |         |     |         |      |            |
| main    | main    | 0   | main    | 40.0 | 200.0      |
| physics | physics | 1   | physics | 40.0 | 60.0       |
| mpi     | mpi     | 2   | mpi     | 5.0  | 20.0       |
| psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
| solvers | solvers | 4   | solvers | 0.0  | 100.0      |
| hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
| mpi     | mpi     | 6   | mpi     | 10.0 | 35.0       |
| psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |



```
gf = GraphFrame( ... )
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
```



### Graph operation: squash

|         | name    | nid | node    | time | time (inc) |
|---------|---------|-----|---------|------|------------|
| node    |         |     |         |      |            |
| main    | main    | 0   | main    | 40.0 | 200.0      |
| physics | physics | 1   | physics | 40.0 | 60.0       |
| mpi     | mpi     | 2   | mpi     | 5.0  | 20.0       |
| psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
| solvers | solvers | 4   | solvers | 0.0  | 100.0      |
| hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
| mpi     | mpi     | 6   | mpi     | 10.0 | 35.0       |
| psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |

|         | name    | nid | node    | time | time (inc) |
|---------|---------|-----|---------|------|------------|
| node    |         |     |         |      |            |
| main    | main    | 0   | main    | 40.0 | 200.0      |
| physics | physics | 1   | physics | 40.0 | 60.0       |
| psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
| hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
| psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |
|         |         |     |         |      |            |







```
gf = GraphFrame( ... )
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
```

#### Graph operation: squash



|         | name    | nid | node    | time | time (inc) |
|---------|---------|-----|---------|------|------------|
| node    |         |     |         |      |            |
| main    | main    | 0   | main    | 40.0 | 200.0      |
| physics | physics | 1   | physics | 40.0 | 60.0       |
| psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
| hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
| psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |
|         |         |     |         |      |            |

|         | name    | nid | node    | time | time (inc) |
|---------|---------|-----|---------|------|------------|
| node    |         |     |         |      |            |
| main    | main    | 0   | main    | 40.0 | 200.0      |
| physics | physics | 1   | physics | 40.0 | 60.0       |
| psm2    | psm2    | 3   | psm2    | 15.0 | 15.0       |
| hypre   | hypre   | 5   | hypre   | 65.0 | 65.0       |
| psm2    | psm2    | 7   | psm2    | 25.0 | 25.0       |
|         |         |     |         |      |            |







```
physics hypre psm2
```

```
gf = GraphFrame( ... )
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
```

```
filtered_gf = gf.filter(lambda x: x['time'] > 10.0)
squashed_gf = filtered_gf.squash()
```



### Graphframe operation: subtract



```
gf1 = GraphFrame( ... )
gf2 = GraphFrame( ... )

gf2 -= gf1
```

# Visualizing output





#### Terminal output



# Generating a flat profile

|                                                | nid    | time         | time (inc)   |
|------------------------------------------------|--------|--------------|--------------|
| name                                           |        |              |              |
| <unknown file=""> [kripke]:0</unknown>         | 17234  | 1.825282e+08 | 1.825282e+08 |
| Kernel_3d_DGZ::scattering                      | 60     | 7.669936e+07 | 7.896253e+07 |
| Kernel_3d_DGZ::LTimes                          | 30     | 5.010439e+07 | 5.240528e+07 |
| Kernel_3d_DGZ::LPlusTimes                      | 115    | 4.947707e+07 | 5.104498e+07 |
| Kernel_3d_DGZ::sweep                           | 981    | 5.018862e+06 | 5.018862e+06 |
| memset.S:99                                    | 3773   | 3.168982e+06 | 3.168982e+06 |
| memset.S:101                                   | 3970   | 2.120895e+06 | 2.120895e+06 |
| Grid_Data::particleEdit                        | 1201   | 1.131266e+06 | 1.249157e+06 |
| <unknown file=""> [libpsm2.so.2.1]:0</unknown> | 324763 | 9.733415e+05 | 9.733415e+05 |
| memset.S:98                                    | 3767   | 6.197776e+05 | 6.197776e+05 |
|                                                |        |              |              |

```
gf = GraphFrame()
gf.from_hpctoolkit('kripke')
grouped = gf.dataframe.groupby('name').sum()
```



#### Generating a flat profile

| nid    | time                                                              | time (inc)                                                                                                                                                     |
|--------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                   |                                                                                                                                                                |
| 17234  | 1.825282e+08                                                      | 1.825282e+08                                                                                                                                                   |
| 60     | 7.669936e+07                                                      | 7.896253e+07                                                                                                                                                   |
| 30     | 5.010439e+07                                                      | 5.240528e+07                                                                                                                                                   |
| 115    | 4.947707e+07                                                      | 5.104498e+07                                                                                                                                                   |
| 981    | 5.018862e+06                                                      | 5.018862e+06                                                                                                                                                   |
| 3773   | 3.168982e+06                                                      | 3.168982e+06                                                                                                                                                   |
| 3970   | 2.120895e+06                                                      | 2.120895e+06                                                                                                                                                   |
| 1201   | 1.131266e+06                                                      | 1.249157e+06                                                                                                                                                   |
| 324763 | 9.733415e+05                                                      | 9.733415e+05                                                                                                                                                   |
| 3767   | 6.197776e+05                                                      | 6.197776e+05                                                                                                                                                   |
|        | 17234<br>60<br>30<br>115<br>981<br>3773<br>3970<br>1201<br>324763 | 17234 1.825282e+08 60 7.669936e+07 30 5.010439e+07 115 4.947707e+07 981 5.018862e+06 3773 3.168982e+06 3970 2.120895e+06 1201 1.131266e+06 324763 9.733415e+05 |

```
gf = GraphFrame()
gf.from_hpctoolkit('kripke')
grouped = gf.dataframe.groupby('name').sum()
```

```
nid
                                                          time (inc)
                                                 time
                       module
'Kripke/build-mvapich2.3/kripke
                                 14366 1.825802e+08 5.847993e+08
4/gcc-4.9.3/hpctoolkit-develop-
                                  2512 0.000000e+00 1.918548e+08
olkit/ext-libs/libmonitor.so.0.0.0
           /usr/lib64/ld-2.17.so
                                  9676 0.000000e+00 9.340625e+02
         /usr/lib64/libc-2.17.so
                                 37970 0.000000e+00 7.150550e+06
         /usr/lib64/libdl-2.17.so
                                  4427 0.000000e+00 2.804062e+02
       /usr/lib64/libpsm2.so.2.1
                                433252 0.000000e+00 2.496037e+06
   /usr/lib64/libpthread-2.17.so
                                  2679 0.000000e+00 4.674375e+02
                                 14945 0.000000e+00 3.898480e+05
:c-4.9.3/lib64/libstdc++.so.6.0.20
npiler/lib/intel64_lin/libintlc.so.5
                                  1215 0.000000e+00 9.357812e+01
3-intel-18.0.1/lib/libmpi.so.12.1.1
                               126726 0.000000e+00 7.962225e+06
```

```
gf = GraphFrame()
gf.from_hpctoolkit('kripke')
grouped = gf.dataframe.groupby('module').sum()
```



## Degree of load imbalance

### Degree of load imbalance

node

| main         main         0.0         1.106013e+05         5.357208e+07         2.16184           CalcForceForNodes         CalcForceForNodes         4.0         1.033639e+06         2.369361e+07         2.142526           CalcQForElems         CalcQForElems         16.0         3.351894e+06         6.649351e+06         2.037656 |                      |                      |      |              |              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------|--------------|--------------|----------|
| main         main         0.0         1.106013e+05         5.357208e+07         2.16184           CalcForceForNodes         CalcForceForNodes         4.0         1.033639e+06         2.369361e+07         2.142526           CalcQForElems         CalcQForElems         16.0         3.351894e+06         6.649351e+06         2.037656 |                      |                      |      |              |              |          |
| CalcForceForNodes         CalcForceForNodes         4.0         1.033639e+06         2.369361e+07         2.142526           CalcQForElems         CalcQForElems         16.0         3.351894e+06         6.649351e+06         2.037656                                                                                                   | LagrangeNodal        | LagrangeNodal        | 3.0  | 2.242594e+06 | 2.593621e+07 | 2.494720 |
| CalcQForElems                                                                                                                                                                                                                                                                                                                              | main                 | main                 | 0.0  | 1.106013e+05 | 5.357208e+07 | 2.161845 |
|                                                                                                                                                                                                                                                                                                                                            | CalcForceForNodes    | CalcForceForNodes    | 4.0  | 1.033639e+06 | 2.369361e+07 | 2.142526 |
|                                                                                                                                                                                                                                                                                                                                            | CalcQForElems        | CalcQForElems        | 16.0 | 3.351894e+06 | 6.649351e+06 | 2.037651 |
| CalcEnergyForElems CalcEnergyForElems 22.0 1.571996e+06 2.807323e+06 2.013174                                                                                                                                                                                                                                                              | CalcEnergyForElems   | CalcEnergyForElems   | 22.0 | 1.571996e+06 | 2.807323e+06 | 2.013174 |
| CalcPressureForElems CalcPressureForElems 23.0 1.235327e+06 1.235327e+06 2.00543                                                                                                                                                                                                                                                           | CalcPressureForElems | CalcPressureForElems | 23.0 | 1.235327e+06 | 1.235327e+06 | 2.005437 |

name nid

time (inc) imbalance

time



# Comparing two profiles



# Comparing two profiles

|               | node          | time (inc)   | name          | nid | time         |
|---------------|---------------|--------------|---------------|-----|--------------|
| node          |               |              |               |     |              |
| MPI_Allreduce | MPI_Allreduce | 2.072371e+06 | MPI_Allreduce | 3   | 2.072371e+06 |
| MPI_Finalize  | MPI_Finalize  | 4.042198e+04 | MPI_Finalize  | 0   | 4.042198e+04 |
| MPI_Isend     | MPI_Isend     | 1.753768e+04 | MPI_lsend     | 15  | 1.753768e+04 |
| MPI_Isend     | MPI_Isend     | 7.718737e+03 | MPI_lsend     | 13  | 7.718737e+03 |
| MPI_Isend     | MPI_Isend     | 7.542969e+03 | MPI_lsend     | 7   | 7.542969e+03 |
| MPI_Waitall   | MPI_Waitall   | 4.573508e+03 | MPI_Waitall   | 5   | 4.573508e+03 |
| MPI_Barrier   | MPI_Barrier   | 4.240952e+03 | MPI_Barrier   | 12  | 4.240952e+03 |



# Comparing several profiles for scaling

```
datasets = glob.glob('lulesh*.json')
datasets.sort()

dataframes = []
for dataset in datasets:
    gf = GraphFrame()
    gf.from_caliper(dataset)
    gf.drop_index_levels()

num_pes = re.match('(.*)-(\d+)(.*)', dataset).group(2)
    gf.dataframe['pes'] = num_pes
    filtered_gf = gf.filter(lambda x: x['time'] > 1e6)
    dataframes.append(filtered_gf.dataframe)

result = pd.concat(dataframes)
pivot_df = result.pivot(index='pes', columns='name', values = 'time')
pivot_df.loc[:,:].plot.bar(stacked=True, figsize=(10,7))
```



#### Questions

#### Scaling Applications to Massively Parallel Machines Using Projections ...

- What is AMPI?
- Is there any standardized data format to store performance profiling/analysis results?
- Does Projections support heterogeneous systems (like a node with a CPU and multiple GPUs)?
- Performance analysis and tuning, in general, seems to incorporate a lot of experience and hand crafting. Are there tools that generate suggestions for possible code modifications based on the profiling result?
- Can we go over the load balancing? Why does the balance look a little worse (and the overall load higher) after refinement? The paper talks about quirks in background load leading to underutilization in a range of processors. What sorts of quirks can lead to this type of behavior?
- How do parallel simulators work? The paper mentions BigSim. Is this a popular one? Is it common for people to use a simulator before running on a large supercomputer?



#### Questions

#### Hatchet: Pruning the Overgrowth of Parallel Profiles

- What is the definition of reproducibility in performance analysis?
- A programmable tool is great to automate analysis, but I guess a dedicated interactive GUI is also very useful for some analysis. Are there plans to incorporate such elements?
- Which profiling tool is most recommended to generate profile data for the processing with Hatchet?
- Is the library open-sourced, or are there any plans?
- How is it that the drop\_index\_levels performance is able to remain basically constant until getting to about 256 processors? Also, what's with the strange shape of the filter performance graph? And is 512 processors as the max for the performance test for the tool a little on the low end? Would the analysis tool be usable to look at profiling results from a real or simulated run on a supercomputer?
- Hatchet is ~2.5k lines of code. What were some of the most complicated parts to implement? Could you go over the design of the code briefly

#### Questions?



**Abhinav Bhatele** 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu