High Performance Computing Systems (CMSC714)

Lecture 13: Isoefficiency and Perf. Modeling

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- MPI trace visualization
- Projections performance analysis tool
- Hatchet: programmable by the user

Isoefficiency

- level of efficiency
- At what rate should we increase problem size with respect to number of processors to keep efficiency constant

• Relationship between problem size and number of processors to maintain a certain

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on n processes

Efficiency: Speedup per process

Efficiency in terms of overhead

• Total time = (useful) computation + overhead (communication + idle time)

 $n \times t_n = t_1 + t_o$ Efficiency = $\frac{t_1}{t_n \times n} = \frac{t_1}{t_1 + t_o} = \frac{1}{1 + \frac{t_o}{t_1}}$

Isoefficiency function

Sequential time = Problem size (number of operations) X time to do each operation

• Efficiency is constant if t_o / W is constant

Performance Modeling

Model the performance of a parallel application

Different methods

- Analytical
- Empirical
- Simulation

LogP model

Model for communication on an interconnection network

L: latency or delay

O: overhead (processor busy in communication)

g: gap

P: number of processors / processes

I/g = bandwidth

alpha + n * beta model

Another model for communication

α : latency

n: size of message

β: bandwidth

$T_{\rm comm} = \alpha + n \times \beta$

Questions

Isoefficiency: Measuring the Scalability of Parallel Algorithms and Architectures

- messaging, waits etc. when there's more input? What is the situation in real systems?
- Is there a consensus on parallel algorithm modeling, like do academics use something like how exactly a parallel algorithm is designed and tested to prove it's scalable.
- look like?
- that affect the overhead time?

• Main assumption made in the paper is that overhead increases linearly with the processor count but it is independent of work 'w'. Is this a feasible assumption? Don't we usually increase our

isoefficiency to explain how approximately efficient an algorithm is in their papers? I'm curious

• Can you show some examples of the isoefficiency metric? And how does the speedup curve

• For problem that have low overhead and limited concurrency (like Dijkstra's problem), we can create a fake high concurrency environment, can we use the dynamic load balancing strategy?

• How to analyze the system's isoefficiency due to contention? What is the most important factor

Questions

LogP: A Practical Parallel Model of Computation

- How is gap related to the bandwidth? Also why network capacity is defined as L/g?
- What is AM (Active Message Libraries)? how do they work and how we can utilize them?
- Is LogP only suitable for fast algorithms? Any other tools designed for analyzing the complexity?
- Why block and block cyclic layout do not yield optimal parallel algorithm? Briefly illustrate
- What does saturation, long messages specialized hardware support and communication patterns be useful as parameters?
- In general do you think LogP is a good candidate for analysis? Which analysis tool you recommend most and most widely used for a wide range of problems?

Abhinav Bhatele, CMSC714

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu