
Lecture 15: OS Noise and Interference
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele, CMSC714

Summary of last lecture

• Goal of auto-tuning: performance portability

• Selecting code variants, applications/system/parameters

• Model free vs. model-based

• Modeling: analytical, empirical, machine learning

2



Abhinav Bhatele, CMSC714

Operating System

• Node on an HPC cluster may have:

• A “full” linux kernel, or

• A light-weight kernel

• Decides what services/daemons run

• Impacts performance predictability

3



Abhinav Bhatele, CMSC714

Operating System (OS) Noise

• Also called “jitter”

• Impacts computation due to interrupts by OS

4

sampling time

d2 d3

t 1 t 2 t 3t min

Figure 2: A sample of detours.

Figure 2 shows how the benchmark (Figure 1) regularly samples the clock until interrupted by a de-
tour. The vertical arrows pointing downwards represent sampling points; empty rectangles are the detours.
Three cases are shown:

1. No detour occurs, so t1 equals tmin (which is the final value of min_ticks from Figure 1).
2. A short detour of length d2 takes place. The inter-sample period t2 is approximately equal to tmin + d2

(it may be slightly larger because executing the detour code may flush the acquisition loop out of the
CPU cache). t2 is below the threshold, so the detour will not be recorded.

3. A longer detour of length d3 takes place. This time t3 ≃ tmin + d3 is above the threshold, so the detour
will be recorded.

The minimum iteration time tmin is very important, because it determines the maximum resolution of
the benchmark. A sample of the results captured on several platforms can be found in Table 3. The results
clearly indicate that all sampled architectures are capable of instrumenting 1 µs events. The exact tmin values
depend on the CPU frequency, but also on other factors, such as the quality of the branch prediction and
compiler optimization. Furthermore, the OS can set memory page attributes, such as cache inhibit or page
guard on pages where the loop resides. If so, the minimum iteration time will be different between two
platforms even if the underlying hardware is the same—this effect can be observed on BG/L. The vastly
superior timer resolution of the XT3 can be attributed to its 64-bit CPU: most operations in the loop are
performed on 64-bit integers, and the other platforms, featuring 32-bit CPUs, must implement those in
software.

Table 3: Minimum acquisition loop iteration times. Most experiments conducted in May 2005, XT3 in Aug.
2005.

Platform CPU OS tmin [ns]
BG/L CN PPC 440 (700 MHz) BLRTS 185
BG/L ION PPC 440 (700 MHz) Linux 2.4 137
Jazz Node Xeon (2.4 GHz) Linux 2.4 62
Laptop Pentium-M (1.7 GHz) Linux 2.6 39
XT3 Opteron (2.4 GHz) Catamount 7

This noise measurement technique is not without limitations. It is meant to be used for identifying in-
herent noise only: the system is expected to be idle, and the benchmark itself is small and simple enough to
generate no user-triggered detours when running. It will not measure any memory management overhead
or detours stemming from processing MPI messages in the background as they arrive from a communica-
tion link.

3.3 Noise measurement results
We have applied our noise measurement technique described above to several different platforms. The
results from five of them are presented in this paper.



Abhinav Bhatele, CMSC714

Measuring OS Noise

• Fixed Work Quanta (FTW) and Fixed Time Quanta (FTQ)

5

Benchmarks: https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t

im
e
 (

u
s)

Core Number

BG/P - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

Ranger - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

XT4 - Noise in sequential computation across 8192 cores

Max
Min

Figure 4: Plot showing system noise plotted against all ranks in a 8192-core run

https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf


Abhinav Bhatele, CMSC714

Measuring OS Noise

• Fixed Work Quanta (FTW) and Fixed Time Quanta (FTQ)

5

Benchmarks: https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

BG/P - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

Ranger - Noise in sequential computation across 8192 cores

Max
Min

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000  7000  8000

E
xe

cu
tio

n
 t
im

e
 (

u
s)

Core Number

XT4 - Noise in sequential computation across 8192 cores

Max
Min

Figure 4: Plot showing system noise plotted against all ranks in a 8192-core run

https://asc.llnl.gov/sequoia/benchmarks/FTQ_summary_v1.1.pdf


Abhinav Bhatele, CMSC714

Impact on communication

6

noise at the receiver can be absorbed on the sender (rendezvous
protocol) if Tws

≥ Tr + σTr
− N . Thus, nonblocking point-

to-point communication has a higher potential to absorb noise
than blocking communication.

E. Collective Operations

Collective operations often have more complex dataflow
dependencies than point-to-point messages.We can, however,
identify the following dependence classes in MPI:

1) broadcast, scatter: all non-root processes depend on
the root process

2) reduce, gather: the root process depends on all non-root
processes

3) scan, exscan: each process depends on all processes
with a lower rank

4) alltoall, allgather, allreduce, barrier, reduce scatter:
each process depends on all other processes

Those semantic dependencies are lower bounds for syn-
chronization and noise propagation, which means for example
that an eager broadcast (at least) propagates all noise that
happened on the root before the call (σTs

) to all other
processes. This model assumes a linear implementation of
the algorithm and would perform asymptotically worse than a
binomial-tree implementation [runtime of Ω(P ) vs. Ω(logP )].
Thus, at large scale, optimized algorithms must be used
to implement collective operations. Such algorithms usually
add recv/send (data) dependencies to the (minimal) semantic
dependencies, which can cause additional noise propagation
from intermediate processes. For example, the binomial tree
shown in Figure 3 has multiple paths from the root node
to the destinations and additional recv/send dependencies are

0
1
2
3

4

5
6

7

8

9

10

11

12

14

13

recv/send dependencies

in this range
Process 7 can absorb noise

Time

Fig. 3. LogGOP diagram for a binomial broadcast tree (P = 15).

introduced along each path. The longest paths in the 15-
process example are (0, 1, 3, 7), (0, 2, 6, 14), (0, 1, 5, 13), and
(0, 1, 3, 11) with four recv/send dependencies along each path.
Each detour σTs

that precedes any send along these paths
might delay all following processes. On the other hand, if all
processes post the broadcast operation at the same global time,
all but the root (process 0 in our example) can absorb some
detour. Some processes (e.g., process 13) could even absorb
three times as much as others. Also, if we take a detailed look
at the longest paths, on all but the root node (e.g., processes 1,
2, or 3), noise that happens before the message is received is
likely to be absorbed, and only detours during the short period
between the receive and the send will delay the operation. Thus
the binomial broadcast is relatively insensitive to noise.

The binomial-tree argument shows that the influence of
noise and its propagation can, even for simple algorithms, not

easily be assessed analytically. Even the globally dependent
algorithms in the fourth category depend on the details of
the underlying point-to-point algorithm. Figure 4 shows the
LogGP diagram of two barrier operations with a compute

0

7

1

6

2

5

3

4

C
O

M
P

U
T

E

delay

Fig. 4. LogGP diagram of two barriers with process 4 delayed (P = 8).

phase between them. We assume that the barrier is imple-
mented with the dissemination algorithm and process 4 is
delayed during the compute phase. All processes leave the
second barrier at different times due to recv/send dependencies
and process 3 is delayed most. This example shows clearly
that current models, which model the collective operation as
a black box (and assume that all processes are delayed in
the same way, e.g., [2]) cannot be used to assess the effects of
noise propagation accurately. An accurate analytical model has
to account for the whole communication and synchronization
of each send/receive pair and all recv/send dependencies to
account for each noise propagation and absorption correctly.
Finding such models for complex communication patterns
seems infeasible. Thus, we propose a full LogGOPS simulator
that enables accurate simulation of large-scale systems.

IV. LOGGOPS SIMULATION FRAMEWORK

The LogGOPS simulation toolchain consists of a trace col-
lector, a schedule generator, an optimized LogGOPS discrete-
event simulator similar to [16], and a visualizer.

The trace collector is a library that uses the MPI profiling
interface [7, §14] in order to record all MPI calls of an
application with minimal overhead.

The schedule generator reads the MPI traces and represents
the control- and dataflow in our happens-before application.
Collective operations are replaced with suitable point-to-point
algorithms. The generator supports state-of-the-art collective
algorithms, such as n-ary (binomial) trees, dissemination,
recursive doubling, and pipelined trees. A mapping from
collective operation to algorithm (e.g., allreduce #→ binary tree
reduce + binary tree broadcast, or barrier #→ dissemination)
can be specified in the schedule generation phase. In this
work, we used the dissemination algorithm for small allreduce,
allgather, alltoall, and barrier calls and the binomial tree
algorithm for small scatter, gather, and broadcast calls.

The simulator reads the schedule, performs the full Log-
GOPS simulation (cf. Section III) and reports the end times
for each process. The simulator was shown to predict collective
operations up to 128 processes with an average error of
less than 1% and full MPI applications with an error below
2%. A complete description of the simulator and a detailed
performance and accuracy study is available in [14] and the

Hoefler et al.: https://htor.inf.ethz.ch/publications/img/hoefler-noise-sim.pdf

https://htor.inf.ethz.ch/publications/img/hoefler-noise-sim.pdf


Abhinav Bhatele, CMSC714

Impact on application codes

7

The Case of Performance Variability on
Dragonfly-based Systems

Abhinav Bhatele†, Jayaraman J. Thiagarajan⇤, Taylor Groves‡, Rushil Anirudh⇤, Staci A. Smith§,
Brandon Cook‡, David K. Lowenthal§

†Department of Computer Science, University of Maryland, College Park
⇤Center for Applied Scientific Computing, Lawrence Livermore National Laboratory

‡NERSC, Lawrence Berkeley National Laboratory
§Department of Computer Science, The University of Arizona

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
Pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Fig. 1. Variation in performance of four applications relative to their respective best observed run times when running on 128 nodes of Cori.

Abstract—Performance of a parallel code running on a large
supercomputer can vary significantly from one run to another
even when the executable and input parameters are left un-
changed. Such variability can occur due to perturbation of
the computation and/or communication in the code. In this
paper, we investigate the case of performance variability arising
due to network effects on supercomputers that use a dragonfly
topology – specifically, Cray XC systems equipped with the Aries
interconnect. We perform post-mortem analysis of network hard-
ware counters, profiling output, job queue logs, and placement
information, all gathered from periodic representative application
runs. We investigate the causes of performance variability using
deviation prediction and recursive feature elimination. Addition-
ally, using machine learning, we create models based on time-
stepped performance data of individual applications that can
forecast the execution time of future time steps.

I. THE PROBLEM

Domain scientists who use large supercomputers for mod-
eling science phenomena often submit many long running
jobs over a period of time due to job time limits. Frequently
these jobs run the same executable and possibly the same
input dataset. It is common to hear science users complain
about performance variability within a single job from one
time step to another, and across equivalent jobs run over a
period of time. Figure 1 shows that the performance of several
HPC codes with different computational and communication
characteristics can be up to 3⇥ slower even when running
the same executable and input. Such performance variability

creates practical issues such as making performance debugging
difficult and estimating the runtime of a job more challenging.
More importantly, when jobs run slower than the best perfor-
mance possible, they use resources for a longer amount of
time than necessary, thereby decreasing simulation efficiency
and overall throughput for the system.

Performance variability in both short and long running jobs
can arise from a multitude of factors ranging from operating
system (OS) noise, varying network congestion, to filesystem
(I/O) traffic. In this work, we primarily focus on variability
arising from sub-optimal communication on networks that
are shared by all concurrently running jobs. When network
resources such as switches (routers) and links are shared by
multiple jobs, it can lead to resource contention, which can
slow down communication and I/O performance. This, in
turn, can significantly impact the overall performance of an
individual job.

We target dragonfly-based systems in this paper because in
spite of adaptive routing, such systems have been known to
suffer from significant performance variability [1], [2]. Drag-
onfly systems are a popular network topology for deploying
large supercomputers due to their low network diameter and
high bandwidth. In order to study variability and identify its
root causes, we set up controlled experiments using production
and proxy applications running at different node counts. We
perform our experiments on a Cray XC40 system at NERSC,
Cori, which uses Aries routers to create a dragonfly topology.



Abhinav Bhatele, CMSC714

Leads to several problems ...

• Individual jobs run slower:

• More time to complete science simulations

• Increased wait time in job queues

• Inefficient use of machine time allocation/core-hours

• Overall lower throughput

• Increase energy usage/costs

8



Abhinav Bhatele, CMSC714

Also affects software development

• Debugging performance issues

• Quantifying the effect of various software changes on performance

• code changes

• compiler/software stack changes

• Requesting time for a batch job

• Writing allocation proposals

9



Abhinav Bhatele, CMSC714

Questions
• Why does using 1, 2, 3 processes per node work as expected with the interference of system noise?

• How can we coschedule system noise in practice?

• What is the meaning of quadrics network?

• I am confused with the definition of computational granularity. Even if there is no message exchange, I/O, or memory access, I 
think context switches still happen and the CPU time can be handed from the application to system processes within a 
“computation phase” (p. 7). So, are granularities such as 1ms referring to the running time on a hypothetical noiseless 
machine and never precise on a real system? Why don’t we measure the “actual” granularities?

• (p. 13, Sec. 6) Why “with a coarse-grained application the fine-grained noise becomes coscheduled”? It seems that 
coscheduling needs a special kernel module (Sec. 3.3) but no alteration on the system is done here. Does this happen 
automatically because of the length of the noise and the length of the computations?

• Back in the “Blue Gene/Q” paper, it is mentioned that there is one processor on the chip dedicated to OS services. Are that 
kind of systems immune to the types of noise discussed in this paper?

• The approach presented in this paper is highly systematic. Given a set of microbenchmarks and known types of noise, is it 
possible to make the identification of the potential causes of suboptimal performance automatic, like in the case of auto-
tuning?

10

The Case of the Missing Supercomputer Performance



Abhinav Bhatele, CMSC714

Questions
• The paper shows that the contention from other jobs is the main factor leading to the 

variability of performances, but is there a way to build a model that can quantify how much each 
candidate factor affects the messaging rate?

• The paper sets configurations in a way that similarity in the message passing characteristics of 
these three systems is maximized. How is it achieved?

• Sec. 5.2 and Sec. 5.3 investigate allocation shape (continuity) and contention from other jobs 
respectively. However, I think there is some extent of correlation between these two factors: 
jobs with lower continuity are in general more likely to suffer from contention because they 
usually have to use more links that are shared with other jobs. Therefore, how do we decouple 
the two factors and conclude that allocation shape is not a major one?

• Is there any node allocation policy that, if given an estimated communication load in addition to 
the expected running time of a job, can utilize this kind of information to alleviate the 
“conflicting router” problem and make a better allocation?

11

There Goes the Neighborhood



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


