
Lecture 24: Machine Learning for HPC
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele, CMSC714

Summary of last lecture

• Discrete-event simulations (DES)

• Parallel DES: conservative vs. optimistic

• Simulation of epidemic diffusion: agent-based, time-stepped modeling

• Trace-driven network simulations: model event sequences

2

Abhinav Bhatele, CMSC714

Why machine learning?

• Proliferation of performance data

• On-node hardware counters

• Switch/network port counters

• Power measurements

• Traces and profiles

• Supercomputing facilites’ data

• Job queue logs, performance

• Sensors: temperature, humidity, power

3

Abhinav Bhatele, CMSC714

Types of ML-related tasks in HPC

• Auto-tuning: parameter search

• Find a well performing configuration

• Predictive models: time, energy, …

• Predict system state in the future

• Time-series analysis

• Identifying root causes/factors

4

Abhinav Bhatele, CMSC714

Understanding network congestion

• Congestion and its root causes not well understood

• Study network hardware performance counters and their correlation with execution
time

• Use supervised learning to identify hardware components that lead to congestion
and performance degradation

5

Abhinav Bhatele, CMSC714

Understanding network congestion

• Congestion and its root causes not well understood

• Study network hardware performance counters and their correlation with execution
time

• Use supervised learning to identify hardware components that lead to congestion
and performance degradation

5

• We analyze the relative impact of different features on
predicting execution times to identify hardware compo-
nents that contribute the most to network congestion.

• We demonstrate our technique using various communi-
cation kernels as well as two scalable, communication-
heavy applications, MILC [12] and pF3D [13].

The prediction techniques presented in this paper are widely
applicable to a variety of scenarios, such as, (1) creating offline
prediction models that can be used for low overhead tuning de-
cisions to find the best configuration parameters, (2) predicting
the execution time in new setups, e.g., on a different number
of nodes, or different input datasets, or even for an unknown
code, (3) identifying the root causes of network congestion on
different architectures, and (4) generating task mappings for
good performance.

II. POTENTIAL ROOT CAUSES OF NETWORK CONGESTION

When messages travel over the interconnection network,
they are broken into smaller units: packets, chunks and flits.
These pass through various hardware components, any or all of
which can delay the communication [10]. We briefly explain
the hardware components and the measurements that we would
need to evaluate contention on each of them (see Table I).

TABLE I
HARDWARE COMPONENTS POTENTIALLY RELATED TO NETWORK

CONGESTION AND THEIR CORRESPONDING INDICATORS

Hardware resource Contention indicator

Source node Injection FIFO length
Network link Number of sent packets
Intermediate router Receive buffer length
All Number of hops (dilation)

At the source node, a message is split into several packets
that are enqueued in network injection FIFOs (there are several
FIFOs per node). Depending on the algorithm used to assign
packets to injection FIFOs, there may be contention for these
FIFOs among packets of one or multiple messages. From
the injection FIFOs, packets are transferred to network links,
which are typically shared by many messages when multiple
routes pass through the same links. When multiple messages
share the same links, the effective bandwidth is less than the
peak due to link contention.

Packets may stall on a router because the next link is busy
or because the destination node is unable to process incoming
packets at their arrival rate. When this happens, routers store
packets temporarily in receive buffers. Stalled packets may
cause congestion when these buffers become full. Finally, each
intermediate component that a message passes through along
its route increases the chance of network congestion. So, the
number of hops a message travels, also referred to as dilation,
can also be an important indicator of congestion.

III. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the process of gathering and
preparing the input data for machine learning, the communi-
cation kernels and applications we use, and the step-by-step

methodology we have developed to apply supervised learning
algorithms to train our models.

A. Gathering data for supervised learning
The goal of this paper is to find correlations of network

and communication related metrics with application execution
time. In machine learning terms, the metrics are features,
or inputs to machine learning algorithms, and the execution
time is the dependent variable. Our dataset thus consists of a
tuple of features and the execution time for each experiment,
which is called a sample in machine learning. Each sample or
experiment is a single run of the application.

We use the technique of task mapping to create a dataset
of several samples for each application that is large enough
to be statistically meaningful. Task mapping allows us to
change the placement of application processes on the network,
thereby changing the flow of messages and the corresponding
execution time. This allows us to collect network hardware
counters and execution time for different configurations of
running the same application executable.

In this paper, we focus on torus interconnects, in particular,
on the five-dimensional (5D) torus network, which provides an
interesting experimental testbed to study the effects of network
congestion. All the experimental data for this study has been
collected on Vulcan, an IBM Blue Gene/Q installation at
LLNL. We use Rubik [14] to generate many different task
mappings of the code running on a 5D torus.

TABLE II
LIST OF COMMUNICATION METRICS (FEATURES) USED AS INPUTS TO THE
MACHINE LEARNING MODEL. THE COLORS IN THIS TABLE CORRESPOND

TO DIFFERENT HARDWARE COMPONENTS IN TABLE I

Feature name Description

avg dilation AO Avg. dilation of average outliers (AO)
max dilation Maximum dilation
sum dilation AO Sum of dilation of AO

avg bytes Avg. bytes per link
avg bytes AO Avg. bytes per link for AO
avg bytes TO Avg. bytes per link for top outliers (TO)
max bytes Maximum bytes on a link
#links AO bytes No. of AO links w.r.t. bytes

avg stalls Avg. receive buffer length
avg stalls AO Avg. receive buffer length for AO
avg stalls TO Avg. receive buffer length for TO
max stalls Maximum receive buffer length
#links AO stalls No. of AO links w.r.t. recv buffer length

avg stallspp Avg. number of stalls per rcv’d packet
avg stallspp AO Avg. no. of stalls per packet for AO
avg stallspp TO Avg. no. of stalls per packet for TO
max stallspp Maximum number of stalls per packet
#links AO stallspp No. of AO links w.r.t. stalls per packet

max inj FIFO Maximum injection FIFO length

Based on the list of hardware components that could con-
tribute to network congestion (Table I), we gather communi-
cation data from three network hardware counters: the number
of packets sent on each link, the receive buffer length and the

Abhinav Bhatele, CMSC714

Investigating performance variability

• Identify users to blame, important network counters

• Predict future performance based on historical time-series data

6

1

1.5

2

2.5

3

Nov 29 Dec 13 Dec 27 Jan 10 Jan 24 Feb 07 Feb 21 Mar 07 Mar 21 Apr 04

R
el
at
iv
e
Pe
rf
or
m
an
ce

MILC
AMG

UMT
miniVite

Abhinav Bhatele, CMSC714

Identifying best performing code variants

• Many computational science and
engineering (CSE) codes rely on solving
sparse linear systems

• Many choices of numerical methods

• Optimal choice w.r.t. performance depends
on several things:

• Input data and its representation, algorithm and its
implementation, hardware architecture

7

LLNL-PRES-xxxxxx
2

Overview of the problem

Platform

⋯

−∆𝑢 = 1
−div(𝜎(u)) = 0

curl curl E + E = 𝑓
-grad(𝛼 div(F)) + 𝛽 F = f

⁞

Preconditioner
Linear Solver

??

models

� Many computational science
and engineering (CSE) code rely
on solving sparse linear systems

� Many choices of numerical
methods

� Performance of a method
depends on
— input data
— data representation
— algorithm
— Implementation
— platform

� Choosing an optimal method for
a given problem is challenging

Abhinav Bhatele, CMSC714

Auto-tuning with limited training data

8

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele, CMSC714

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

8

0

10

20

30

40

50

60

70

80

90

1 10 100 1000

N
um
be
r
of
co
nf
gu
ra
tio
ns

Execution time (s)

Kripke: Performance variation due to input parameters

Abhinav Bhatele, CMSC714

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

8

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele, CMSC714

Auto-tuning with limited training data

• Application performance depends on many factors:

• Input parameters, algorithmic choices, runtime parameters

• Performance also depends on:

• Code changes, linked libraries

• Compilers, architecture

• Surrogate models + transfer learning

8

0

10

20

30

40

50

60

70

10 20 30 40

N
um
be
r
of
ru
ns

Execution time (s)

Quicksilver: Performance variation due to external factors

Abhinav Bhatele, CMSC714

Questions

• Can you go over the differences between weak and strong models in ML?

• How is OS noise accounted for in these runs or is Blue Gene/Q truly noiseless?

• Why do you use R^2 and RCC?

• Was the goal of the paper to identify parameters that are important or generate
accurate predictions? Seems like the parameters identified at the end were pretty
reasonable to expect to be important in the first place.

• Why do the authors choose 5D torus network in particular?

9

Identifying the Culprits behind Network Congestion

Abhinav Bhatele, CMSC714

Questions
• What about using deep learning techniques to do the nonparametric regression to predict the

relation, since a lot of data samples have been collected?

• Why is the Huber loss preferred over L1 or L2 loss in this task? How is the value of delta
selected?

• Why is it necessary to perform an exhaustive search over all possible feature combinations? If
some features are useless, wouldn’t they be automatically ignored by the machine learning models?

• Regarding the zero R^2 scores, what does it mean by an “artifact” of scaling? If we scale the
features in the same way for both the training and the testing set, why is there a problem? How
does standardization differ from scaling? If standardization is better, why wasn’t it used in this
paper?

• What are the problems or limitations of selecting features according to the rank correlation
between every single feature and the execution time?

10

Identifying the Culprits behind Network Congestion

Abhinav Bhatele, CMSC714

Questions

11

Bootstrapping Parameter Space Exploration for Fast Tuning

• The mapping of the parameter space to an undirected graph was a little confusing,
could you go over it?

• How does the label propagation routine choose 'prior beliefs'? How many labelled
nodes are required for the results to converge?

• If the models are pre run, how can you be sure to sample the configuration space (page
6, second column) properly? Does GEIST require an exhaustive search of the space?

• If the hyperparameters are set by the initial random sample, is it possible to start with
an anomalous sample that reduces performance dramatically (especially with the 'hard
optimization problems' where there a few optimal solutions)

• What dictates the choice of the number of iterations to perform in GEIST?

Abhinav Bhatele, CMSC714

Questions

12

Bootstrapping Parameter Space Exploration for Fast Tuning
• How could we determine bik, which denotes the prior belief on associating node i with label k?

• How is the stability of this GEIST Algorithm? Since we predict the labels and do the sampling
based on previous iterations, leading to propagation of error.

• Can the autotuning problem be modeled as a regression task?

• How do we represent configurations as vectors so that the set of nearest neighbors can be
determined by computing L1 distances?

• Is the prior belief term bik used in the GEIST algorithm? Although GEIST does not require
prior knowledge, can we further reduce the number of samples to collect by incorporating
expert knowledge through this term?

• How difficult is it to find suitable hyperparameters? Can this be time-consuming, because we
might have to run GEIST multiple times with different hyperparameter settings?

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

