Assignment 1

CMSC 726: Machine Learning
August $27^{\text {th }}, 2019$

Name:

1. Problem 9.1 from the text book.
2. Let $J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(\theta^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2}$
(a) Compute $\nabla_{\theta} J(\theta)$ and $\nabla_{\theta}^{2} J(\theta)$.
(b) Show that $J(\theta)$ is convex.
(c) Under what conditions on input samples, $J(\theta)$ is strictly convex?
3. Let $\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\right\}$ be m i.i.d samples drawn from a Gaussian distribution $\mathcal{N}\left(\mu_{\text {true }}, \sigma_{\text {true }}^{2} \mathbf{I}\right)$ where parameters $\mu_{\text {true }}$ and $\sigma_{\text {true }}$ are unknown. A common approach to estimate model parameters is maximum likelihood estimation (MLE).
(a) The likelihood function $L(\mu, \sigma)$ is defined as the probability of observing samples $\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}\right\}$ from the distribution $\mathcal{N}\left(\mu, \sigma^{2} \boldsymbol{I}\right)$. Write down the likelihood function in this case.
(b) Argue that $\operatorname{argmax}_{\mu, \sigma} L(\mu, \sigma)=\operatorname{argmax}_{\mu, \sigma} \log L(\mu, \sigma)$.
(c) By maximizing the log likelihood function, compute MLE estimates of model parameters.
4. Compute $\nabla_{\boldsymbol{X}} \operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{C} \boldsymbol{X} \boldsymbol{D}\right]=$?

- Hint 1: if $d y=\operatorname{Tr}[\boldsymbol{A}(d \boldsymbol{X})]$, then the $\frac{d y}{d \boldsymbol{X}}=\boldsymbol{A}^{\boldsymbol{T}}$.
- Hint 2: The trace is invariant to cyclic permutations. For example, $\operatorname{Tr}\left[\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{3}}\right]=\operatorname{Tr}\left[\boldsymbol{A}_{\mathbf{3}} \boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}}\right]=$ $\operatorname{Tr}\left[\boldsymbol{A}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{3}} \boldsymbol{A}_{\mathbf{1}}\right]$. In general, $\operatorname{Tr}\left[\boldsymbol{A}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{2}} \ldots \boldsymbol{A}_{\boldsymbol{n}}\right]=\operatorname{Tr}\left[\boldsymbol{A}_{\boldsymbol{k}} \boldsymbol{A}_{\boldsymbol{k}+\mathbf{1}} \ldots \boldsymbol{A}_{\boldsymbol{n}} \boldsymbol{A}_{\mathbf{1}} \ldots \boldsymbol{A}_{\boldsymbol{k}-\mathbf{1}}\right], 1 \leq k \leq n$.
- Hint 3: $\operatorname{Tr}[\boldsymbol{A}]=\operatorname{Tr}\left[\boldsymbol{A}^{\boldsymbol{T}}\right]$.
- Hint 4: The following is a solution for a simplified version of the problem. To compute $\nabla_{\boldsymbol{X}} \operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}}\right]$, we can write

$$
\begin{aligned}
& d \operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}}\right]=\operatorname{Tr}\left[d\left(\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}}\right)\right] \\
& =\operatorname{Tr}\left[\boldsymbol{A} d(\boldsymbol{X}) \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}}\right]+\operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} d\left(\boldsymbol{X}^{\boldsymbol{T}}\right)\right] \\
& =\operatorname{Tr}\left[\boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A} d(\boldsymbol{X})\right]+\operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} d\left(\boldsymbol{X}^{\boldsymbol{T}}\right)\right]
\end{aligned} \begin{aligned}
& \text { (using the product rule of derivatives) } \\
& =\operatorname{Tr}\left[\boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A} d(\boldsymbol{X})\right]+\operatorname{Tr}\left[d(\boldsymbol{X}) \boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A}^{\boldsymbol{T}}\right]
\end{aligned} \text { (using the cyclic permutation property for the first term) }
$$

Therefore, using Hint 1, we have $\nabla_{\boldsymbol{X}} \operatorname{Tr}\left[\boldsymbol{A} \boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{\boldsymbol{T}}\right]=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{B}^{\boldsymbol{T}}+\boldsymbol{A} \boldsymbol{X} \boldsymbol{B}$.
5. (Programming Assignment) Let $\mathbf{x} \in \mathbb{R}^{n}$ and $z \in \mathbb{R}$ be zero-mean independent Gaussian random variables with covariance matrices \mathbf{I} and σ^{2}, respectively. That is, $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$ and $z \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Define $y=\theta^{\mathbf{T}} \mathbf{x}+\theta_{0}+z$. In this assignment, we want to use stochastic gradient descent (SGD) to compute a linear regression model between \mathbf{x} and y. Write a Python code to do the following:
(a) Let $n=4, \sigma^{2}=1 / 4, \theta=[1,1 / 2,1 / 4,1 / 8]^{T}$ and $\theta_{0}=2$. Generate $m=10,000$ i.i.d. training samples from $\mathbb{P}_{X, Y}$. That is $\left.\left\{\left(\mathbf{x}^{(1)}\right), y^{(1)}\right), \ldots,\left(\mathbf{x}^{(m)}, y^{(m)}\right)\right\}$.
(b) Use SGD with a batch size of 10 to estimate model parameters. Plot the Mean-Squared Error (MSE) vs. the number of iterations.
(c) Generate m new i.i.d. test samples from $\mathbb{P}_{X, Y}$. Use estimated parameters to compute the MSE on the test set.
(d) Repeat parts (a)-(c) using $m=10$. How do training and test errors change? Why?

