
Assignment 1

CMSC 726: Machine Learning
August 27th, 2019 Name:

1. Problem 9.1 from the text book.

2. Let J(θ) = 1
2

∑m
i=1(θTx(i) − y(i))2

(a) Compute ∇θJ(θ) and ∇2
θJ(θ).

(b) Show that J(θ) is convex.

(c) Under what conditions on input samples, J(θ) is strictly convex?

3. Let {x(1), . . . ,x(m)} be m i.i.d samples drawn from a Gaussian distribution N (µtrue, σ
2
trueI) where pa-

rameters µtrue and σtrue are unknown. A common approach to estimate model parameters is maximum
likelihood estimation (MLE).

(a) The likelihood function L(µ, σ) is defined as the probability of observing samples {x(1), . . . ,x(m)}
from the distribution N (µ, σ2I). Write down the likelihood function in this case.

(b) Argue that argmaxµ,σ L(µ, σ) = argmaxµ,σ logL(µ, σ).

(c) By maximizing the log likelihood function, compute MLE estimates of model parameters.

4. Compute ∇XTr
[
AXBXTCXD

]
=?

• Hint 1: if dy = Tr[A(dX)], then the dy
dX = AT .

• Hint 2: The trace is invariant to cyclic permutations. For example, Tr[A1A2A3] = Tr[A3A1A2] =
Tr[A2A3A1]. In general, Tr[A1A2 . . . An] = Tr[AkAk+1 . . . AnA1 . . . Ak−1], 1 ≤ k ≤ n.

• Hint 3: Tr[A] = Tr[AT ].

• Hint 4: The following is a solution for a simplified version of the problem. To compute∇XTr
[
AXBXT

]
,

we can write

dTr
[
AXBXT

]
= Tr

[
d(AXBXT )

]
= Tr

[
Ad(X)BXT

]
+ Tr

[
AXBd(XT )

]
(using the product rule of derivatives)

= Tr
[
BXTAd(X)

]
+ Tr

[
AXBd(XT )

]
(using the cyclic permutation property for the first term)

= Tr
[
BXTAd(X)

]
+ Tr

[
d(X)BTXTAT

]
(using the transpose invarience property for the second term)

= Tr
[
BXTAd(X)

]
+ Tr

[
BTXTAT d(X)

]
(using the cyclic permutation property for the second term)

= Tr
[
(BXTA + BTXTAT )d(X)

]
.

Therefore, using Hint 1, we have ∇XTr
[
AXBXT

]
= ATXBT + AXB.



5. (Programming Assignment) Let x ∈ Rn and z ∈ R be zero-mean independent Gaussian random variables
with covariance matrices I and σ2, respectively. That is, x ∼ N (0, I) and z ∼ N (0, σ2). Define
y = θTx + θ0 + z. In this assignment, we want to use stochastic gradient descent (SGD) to compute a
linear regression model between x and y. Write a Python code to do the following:

(a) Let n = 4, σ2 = 1/4, θ = [1, 1/2, 1/4, 1/8]T and θ0 = 2. Generate m = 10, 000 i.i.d. training
samples from PX,Y . That is {(x(1)), y(1)), ..., (x(m), y(m))}.

(b) Use SGD with a batch size of 10 to estimate model parameters. Plot the Mean-Squared Error
(MSE) vs. the number of iterations.

(c) Generate m new i.i.d. test samples from PX,Y . Use estimated parameters to compute the MSE on
the test set.

(d) Repeat parts (a)-(c) using m = 10. How do training and test errors change? Why?
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