Assignment 3

CMSC 726: Machine Learning
November $7^{\text {th }}, 2019$

Name:

1. VC dimension of Hypothesis class: Consider the following hypothesis class $\mathcal{H}=\left\{h(x): \operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right) \mid x \in\right.$ $\left.\mathbb{R}^{n}\right\}$, where $\operatorname{sign}(z)=1$ if $z \geq 0$ and $\operatorname{sign}(z)=0$ if $z \leq 0 . \operatorname{VCdim}(\mathcal{H})$
(a) Show that VCdim $\geq n$. (Hint 1: Imaging a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ that correspond to the standard basis in \mathbb{R}^{n}, i.e. $\mathbf{x}_{k}^{(i)}=1$ if $k=i$ and $\mathbf{x}_{k}^{(i)}=0$ if $k \neq i$. What is the value of \mathbf{w} that enables you to classify all points correctly using).
(b) Show that VCdim $\leq n$. (Hint 2: Imagine that there exists a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}$ (more than n) such that they are shattered by \mathcal{H}. Form a matrix $\mathbf{H}=\mathbf{X} \mathbf{W}$ where $\mathbf{X}=\left[\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}\right]^{T}$ and $\mathbf{W}=\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{2^{n}}\right]$. Here each $\mathbf{w}_{i}, 1 \leq i \leq 2^{n}$ corresponds to a possible labelling. Then prove that $\operatorname{rank}(\mathbf{H}) \leq n$. This causes a contradiction in the assumption that \mathcal{H} can shatter $n+1$ many points.)
2. (Programming Assignment) The Hoeffding inequality states that:

$$
\mathbb{P}\left[\left|\frac{\theta_{1}+\cdots+\theta_{m}}{m}-\mathbb{E}[\theta]\right| \geq \epsilon\right] \leq 2 e^{\frac{-2 m \epsilon^{2}}{(b-a)^{2}}}
$$

where θ_{i} 's are generated in an i.i.d. fashion and each θ_{i} satisifies $a \leq \theta_{i} \leq b$.
Let each θ_{i} be generated from \mathbb{P}_{θ} which is a uniform $[0,1]$ distribution.
(a) Generate $k=100$ many sets where each set S_{i} consists of $m=100$ i.i.d. samples from \mathbb{P}_{θ}.
(b) What is the fraction of k sets that satisfies the following bound: $\mathbb{P}\left[\left|\frac{\theta_{1}+\cdots+\theta_{m}}{m}-\frac{1}{2}\right| \leq 0.1\right]$
(c) Compare the number from part (b) with the Hoeffding bound.

