Assignment 3

CMSC 726: Machine Learning November 7th, 2019

Name:

- 1. VC dimension of Hypothesis class: Consider the following hypothesis class $\mathcal{H} = \{h(x) : sign(\mathbf{w}^T \mathbf{x}) | x \in \mathbb{R}^n\}$, where sign(z) = 1 if $z \ge 0$ and sign(z) = 0 if $z \le 0$. VCdim(\mathcal{H})
 - (a) Show that VCdim $\geq n$. (**Hint 1**: Imaging a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ that correspond to the standard basis in \mathbb{R}^n , i.e. $\mathbf{x}_k^{(i)} = 1$ if k = i and $\mathbf{x}_k^{(i)} = 0$ if $k \neq i$. What is the value of \mathbf{w} that enables you to classify all points correctly using).
 - (b) Show that VCdim $\leq n$. (**Hint 2**: Imagine that there exists a set of points $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}$ (more than n) such that they are shattered by \mathcal{H} . Form a matrix $\mathbf{H} = \mathbf{X}\mathbf{W}$ where $\mathbf{X} = [\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n+1)}]^T$ and $\mathbf{W} = [\mathbf{w}_1, \ldots, \mathbf{w}_{2^n}]$. Here each $\mathbf{w}_i, 1 \leq i \leq 2^n$ corresponds to a possible labelling. Then prove that $rank(\mathbf{H}) \leq n$. This causes a contradiction in the assumption that \mathcal{H} can shatter n + 1 many points.)
- 2. (Programming Assignment) The Hoeffding inequality states that:

$$\mathbb{P}\Big[\Big|\frac{\theta_1 + \dots + \theta_m}{m} - \mathbb{E}[\theta]\Big| \ge \epsilon\Big] \le 2e^{\frac{-2m\epsilon^2}{(b-a)^2}}$$

where θ_i 's are generated in an i.i.d. fashion and each θ_i satisifies $a \leq \theta_i \leq b$. Let each θ_i be generated from \mathbb{P}_{θ} which is a uniform [0, 1] distribution.

- (a) Generate k = 100 many sets where each set S_i consists of m = 100 i.i.d. samples from \mathbb{P}_{θ} .
- (b) What is the fraction of k sets that satisfies the following bound: $\mathbb{P}[|\frac{\theta_1 + \dots + \theta_m}{m} \frac{1}{2}| \leq 0.1]$
- (c) Compare the number from part (b) with the Hoeffding bound.