
��: A Protocol for Scalable Anonymous Communication �

Rob Sherwood Bobby Bhattacharjee Aravind Srinivasan
University of Maryland, College Park, Maryland, USA

�capveg, bobby, srin�@cs.umd.edu

Abstract

We present a protocol for anonymous communication over the
Internet. Our protocol, called �� (Peer-to-Peer Personal Pri-
vacy Protocol) provides sender-, receiver-, and sender-receiver
anonymity. �� is designed to be implemented over the current
Internet protocols, and does not require any special infrastruc-
ture support. A novel feature of �� is that it allows individual
participants to trade-off degree of anonymity for communication
efficiency, and hence can be used to scalably implement large
anonymous groups. We present a description of ��, an analysis
of its anonymity and communication efficiency, and evaluate its
performance using detailed packet-level simulations.

1 Introduction

We present the Peer-to-Peer Personal Privacy Protocol (��)
which can be used for scalable anonymous communication over
the Internet. �� provides sender-, receiver-, and sender-receiver
anonymity, and can be implemented over the current Internet
protocols. �� can scale to provide anonymity for hundreds
of thousands of users all communicating simultaneously and
anonymously.

A system provides receiver anonymity if and only if it is not
possible to ascertain who the receiver of a particular message is
(even though the receiver may be able to identify the sender).
Analogously, a system provides sender anonymity if and only
if it is not possible for the receiver of a message to identify the
original sender. It is not possible to provide perfect anonymity
in a communication system since it is usually possible to enu-
merate all possible senders or recipients of a particular message.
In general, the degree of sender/receiver anonymity is measured
by the size of the set of people who could have sent/received a
particular message. There have been a number of systems de-
signed to provide receiver anonymity [2, 5], and a number of
systems that provide sender anonymity [8, 9]. In these systems,

�The first author is with the Department of Computer Science, Uni-
versity of Maryland at College Park. The second and third authors are
with the Department of Computer Science and the University of Mary-
land Institute for Advanced Computer Studies, University of Maryland
at College Park. This work was supported by a grant (ANI 0092806)
from the National Science Foundation.

individual senders (or receivers) cannot determine the destina-
tion (or origin) of messages beyond a certain set of hosts in the
network.

Our system,��, provides both receiver and sender anonymity
and also provides sender-receiver anonymity. Specifically, we
assume that an adversary in our system may passively moni-
tor every packet on every link of a network, and is able to cor-
relate individual packets across links. Thus, the adversary can
mount any passive attack on the underlying networking infras-
tructure. However, the adversary is not able to invert encryp-
tions and read encrypted messages. The adversary can also read
all signaling messages in the system. Our system provides re-
ceiver and sender anonymity under this rather strong adversarial
model and provides the sender-receiver anonymity (or unlink-
ability) property. Thus, the adversary cannot determine if (or
when) any two parties in the system are communicating. ��

maintains anonymity even if one party of a communication col-
ludes with the adversary who can now identify specific packets
sent to or received from the other end of the communication).
Unlike previous known solutions, �� can be used to implement
a scalable wide-area system with many thousand active partici-
pants, all of whom may communicate simultaneously.

1.1 A naive solution

Consider a global broadcast channel. All participants in the
anonymous communication send fixed length packets onto this
channel at a fixed rate. These packets are encrypted such that
only the recipient of the message may decrypt the packet, e.g.,
by using the receiver’s published public key. Assume that there
is a mechanism to hide, spoof, or re-write sender addresses, e.g.,
by implementing the broadcast using an application-layer peer-
to-peer ring, and that all messages are sent to the entire group.
Lastly, every message is hop-by-hop encrypted, and thus, it is
not possible to map a specific incoming message to a node to a
particular outgoing message. (In essence, every node acts as a
mix [1]). It is possible that a node may not be actively communi-
cating at any given time, but in order to maintain the fixed com-
munication rate, it would have to send a packet anyway. Such
a packet would be a noise packet, and any packet destined for a
particular receiver would be a signal packet.

This system provides receiver anonymity, since the sender
does not know where in the broadcast group the receiver is or

1

which host or address the receiver is using; the sender only
knows that the receiver is part of the broadcast group. This
system also provides sender anonymity, since all messages to
a given receiver (in case of a ring) come from a single upstream
node, and the receiver cannot determine the original sender of a
message. Lastly, this solution also provides unlinkability from a
passive adversary since the adversary is not able to gain any ex-
tra information from monitoring any (or all) network links. For
example, suppose node � is sending messages to node �. The ad-
versary sees the same number of messages from node � whether
it were conversing with � or not, and all of the messages are
sent to the same broadcast address. Similarly, whether � talks to
� or not, � receives the same number of messages from � over
any suitably large interval. Note that the adversary is not able
to trace a message from the sender to a receiver or vice-versa
because of the hop-by-hop encryption, and thus, even if one end
of a communication colludes with the adversary, the anonymity
of the other party is not compromised.

This naive solution does not scale due to its broadcast nature.
As the number of people in the channel increases, the available
bandwidth for any useful communication decreases linearly, and
end-to-end reliability decreases exponentially. It is possible to
increase the bandwidth utilization and reliability by limiting the
number of people in a broadcast group, but then two parties who
want to communicate may end up in different groups.
�� is based upon this basic broadcast channel principle; we

scale the system by creating a hierarchy of broadcast channels.
Clearly, any broadcast-based system, including �� will not pro-
vide high bandwidth efficiency, both in terms of how many bits
it takes a sender–receiver pair to exchange a bit of information,
and how many extra bits the network carries to carry one bit of
useful information. �� allows users to choose how inefficient
the communication is, and provides a scalable control structure
for securely and anonymously connecting users in different log-
ical broadcast groups. We present an overview of �� next.

1.2 Solution overview

�� scales the naive solution by creating a broadcast hierar-
chy. Different levels of the hierarchy provide different levels
of anonymity (and unlinkability), at the cost of communication
bandwidth and reliability. Users of the system locally select a
level of anonymity and communication efficiency and can lo-
cally map themselves to a level which provides requisite per-
formance. At any time, it is possible for individual users in
�� to decrease anonymity by choosing a more communication
efficient channel. (Unfortunately, it is not possible to regain
stronger anonymity). Obviously, it is possible to choose a set
of parameters that is not supported by the system (e.g., mutually
incompatible levels of bandwidth utilization and anonymity).

Chaum introduced sender anonymity in [1], and sender-
receiver anonymity (as the dining cryptographers problem)
in [2]. The solution presented in [2] provides sender, receiver
anonymity and unlinkability. However, it does not provide a
bandwidth vs. communication efficiency trade-off, and one
“conversation” can be only sustained at any one time. The clos-

est prior work to �� is [5]. This system also allows a trade-
off between bandwidth and communication efficiency, but like
in [2], in this system only one sender-receiver pair may simul-
taneously communicate in this system. Thus, these systems
cannot be used to implement large anonymous communication
groups. A number of recent protocols [8, 4] also provide anony-
mous communication over the Internet. These protocols have
the same underlying systems assumptions as ��; however, un-
like�� these protocols cannot withstand an all-powerful passive
adversary.

1.3 Roadmap

The rest of this paper is structured as follows: we discuss related
work in Section 2. We describe the �� algorithm in detail in
Section 3, and present a set of analytic bounds on performance
in Section 5. In Section 6, we analyze results from packet-level
�� simulator. We discuss future work and conclude in Section 7.

2 Related Work

We discuss prior work related to��. We begin with a discussion
of the Dining Cryptographers problem, and discuss some other
systems that provide anonymity over the Internet.

2.1 Dining Cryptographers and Mixes

Dining Cryptographers The Dining Cryptographers (DC-
net) protocol [2] provides sender anonymity under an adversary
model similar to ��. DC-Net assumes a public key infrastruc-
ture, and users send encrypted broadcasts to the entire group,
thus achieving receiver anonymity. However, unlike ��, all
members of the group are made aware of when a message is
sent, so Dining Cryptographers does not have the same level of
sender-receiver anonymity. Also, in DC-net, only one user can
send at a time, so it takes additional bandwidth to handle colli-
sions and contention [10]. Lastly, a DC-net participant fixes its
anonymity vs. bandwidth trade off when joining the system, and
there are no provisions to rescale that trade off when others join
the system.

Mixes A mix is a process that provides anonymity via packet
re-shuffling. Mixes were introduced by Chaum in [1]. Mixes
work best in series, and need a constant amount of traffic to
avoid delay while preserving anonymity. �� does both by creat-
ing a hierarchy of mixes, and the constant stream of signal and
noise packets serve to keep the mixes operational.

2.2 Recent Internet-based Anonymous
Communications Work

We describe four anonymity protocols that can be implemented
over the Internet

2

Xor-Trees Like ��, Xor-Trees [5] provides sender-,
receiver-, and sender-receiver anonymity. However, unlike ��,
Xor-Trees do not admit a per user anonymity vs. communica-
tions efficiency trade off. Also, like in DC-net, only a single user
may send at any one time in an Xor-Tree. Thus, in an Xor-Tree,
performance degrades due to collisions as the number of users
increase.

Crowds, Hordes, and Onion Routing Both Crowds [8]
and the more recent Hordes [9] provide sender anonymity. The
basic idea in both these systems is similar to Onion Routing [6],
in which messages between communicating users are routed
on an application-layer overlay using paths different than the
shortest path. The receiver cannot resolve the sender of a par-
ticular message since messages take different, potentially ran-
domly chosen, routes through the network. However, neither
system can provide anonymity when confronted by a passive
observer who can mount statistical attacks by tracing and corre-
lating packets throughout the network. None of these systems
provide receiver anonymity.

FreeNet Freenet [4] provides an anonymous publish-
subscribe system over the Internet using an application-layer
overlay, much like ��. However, FreeNet is designed for
anonymous storage and retrieval, and the anonymity issues for
such a system are different than a system like �� that provides
anonymity when communicating parties are on-line. There is no
notion of noise or signal, etc., and the major issues in FreeNet
are decoupling/hiding authorship from a particular document,
and providing fault-tolerant anonymous availability for a set of
static documents.

3 The �� Protocol
�� is based upon public-key cryptography. �� does not require
a global public-key infrastructure; however, we do assume that if
two parties wish to communicate, they can ascertain each other’s
public keys using an out-of-band mechanism.

Assume � individuals1 wish to form an anonymous commu-
nication system using ��. Assume each of these �� users (or
group members) have public keys ��� � � � ����. �� will use
these � public keys, called communication keys to create a log-
ical broadcast hierarchy.

3.1 The �� logical broadcast hierarchy

The �� logical broadcast hierarchy is a binary tree (�) which
is constructed using the public keys ��� � � � � ����. Each node
of � consists of a bitstring of a specified length. We present
the algorithm assuming each node of � contains both a bitstring
and a bitmask. The bitmask specifies how many of the most
significant bits in the bitstring are valid. Though not strictly

1It is entirely possible that the � keys belong to � different individ-
uals, such that � � � . We discuss this issue in Section 3.5.

necessary, the addition of the bitmask will significantly ease our
exposition. We use the notation (�/�) to represent the contents
of a group, where � is the bitstring, and � is the number of valid
bits.

The root of � consists of the null bitstring and a zero length
mask. We represent the root with the label ��	��. The left child
of the root contains the group ��	�� and the right child is ��	��.
The rest of the tree is constructed as shown in Figure 1. For
example, note that group ��	�� represents the bitstring � and
the group ���	�� represents the bitstring ��.

Each group in � corresponds to a broadcast channel in ��.
A message sent to a group is (unreliably) forwarded to a subset
of all members of the system. Suppose user
 sends a message
to group ��	��. This message will be forwarded to user � in
group ���	��� if and only if the � most significant bits of � and
�� are the same, where � is defined to be ���������. We call
this common prefix testing the “min-common-prefix check”.

Thus, a message sent to a group ��	�� is sent to three distinct
regions of the � tree:

� Local: A message sent on ��	�� is broadcast to all mem-
bers of the ��	�� group.

� Path to root: For each �� �, this message is also
broadcast to all members of the group ����	���, where
��� denotes the �’-bit prefix of �.

� Subtree: Lastly, for all��� � �, this message is also sent
to all groups ��� � 	����, where �� � 	� is any bitstring of
length � that begins with the string �.

For example, any message sent to the root ��	�� is forwarded
to all members of all groups. Any message sent to �����		�
is sent to members of the ���� group (local). This message is
also sent to all members of the ����	
� group; all members of
the ���	�� and ��	�� groups, and the all members of the ��	��
group. Further, this message is sent to every member of the
����� � 	�� groups, where � � 	, and ����� is any bitstring
that starts with ����. In general, when a message is sent to
group ��	��, members of groups ���	��� are forwarded this
message if and only if the nodes of � corresponding to ��	��
and ���	��� have an ancestor-descendant relationship. Note
that these broadcast groups should be implemented as peer-to-
peer unicast trees in the underlying network (and not multicast
trees). These channels may lose messages and require no par-
ticular consistency, reliability, or quality-of-service guarantees.
We describe the precise networking and systems requirements
of �� and underlying protocols in Section 4.3.

Each user in the system joins a set of such broadcast groups.
In general, communication efficiency increases as the groups’s
mask size increases; however, as we shall see, this increase in
efficiency comes at an expense of reduced anonymity. The depth
of the� tree is defined at run-time and depends on the number of
people in the system (�), and on the security parameters chosen
by individual users. However, we need to fix a maximum depth
�� of this tree: choosing this parameter, a-priori, is not difficult,
since such a system can accommodate approximately ��� � �
users, where � is the least number of people in any channel. In
our implementation, we have chosen �� to be 32.

3

�/0��
��

0/1��
��

00/2��
��

000/3��
���� ��

001/3��
��
�
�� �

��

01/2��
��

010/3��
���� ��

011/3��
��

��
��

��
�� ��������

1/1��
��

10/2��
��

100/3��
���� ��

101/3��
��
�
�� �

��

11/2��
��

110/3��
���� ��

111/3��
��

Figure 1: Form of the � � logical broadcast tree (�). The effective broadcast channels of a user in group ������ is
shown in boldface.

3.2 Mapping users to �

We use a secure public hash function (����) to map users to a
� node (group). Consider user
, with public-key ��. Assume
�� � ����� ��� ��� . User
 will join some group of the
form ��	�. The length of the mask � is chosen independently
and randomly by user
 according to a local security policy, as
described in Section 3.4. The choice of the � parameter should
be secret, and it should not be possible to determine which pre-
cise group a user is joined to. Thus, given a public key, it is
public knowledge which set of groups a user may be in, but it
is difficult to determine which specific group in this set the user
has chosen.

Suppose users
 and � are mapped to some arbitrary groups
in the tree �. We say a channel � is common between
 and �
if and only if messages sent to � are forwarded to both
 and
�. Suppose
 and � join groups ���	��� and ���	��� re-
spectively, and assume both know each other’s public key. Since

 knows �� , it can determine �� ; however,
 does not know
the value of �� . Even without any knowledge of the masks,

 and � can begin to communicate using the ��	�� channel.
Unfortunately, this communication channel can be quite lossy
since messages have a higher probability of getting lost in the
channels “higher” up in the � tree and ��	�� is the most lossy
communication channel of all.

The communication efficiency can be improved as follows.
Instead of sending messages through ��	��,
 could try to send
messages on to some group ���	��, � � �. � would receive
these messages, and may reply back to
. However, in doing
so, � sacrifices some anonymity since
 can now map � to a
smaller set of users. (
 maps � to a smaller set using a “Dif-
ference Attack” described in Section 3.5). In general, � can
choose to communicate back to
 using any length mask; how-
ever, longer masks trade-off anonymity for communication effi-
ciency. � can selectively “trust” some users and reveal longer
masks for these trusted users, but in general, the anonymity of�

is bounded by the longest mask that it has revealed to any other
member. Lastly, note that the communication efficiency is upper
bounded by the smaller of the two masks revealed by either of
the participants in a communication.

Suppose
 and � have agreed upon the length of a mask
(say �), and wish to communicate. This means
 is joined to
some group ���	��� and� is joined to some group ���	���,
where both �� and �� are greater than or equal to �. They
can now communicate by sending messages to a lowest common
ancestor channel that has both ���	��� and ���	��� as de-
scendants. However, if
 and � only join one group each, and
the public keys are uniformly hashed to channels on the � tree,
then there is approximately �� probability that ��	�� will be
the only channel that
 and � would have in common! Simi-
larly, for any given node, an exponentially high number of nodes
would be “farther” away on the logical broadcast tree, and in
general, the communication on the system will not be very effec-
tive. Once again, we are reduced to using the inefficient global
broadcast channel for most communications.

Our solution to this inefficient routing is as follows: each user
joins a small number of groups on the logical tree. For each
joined group, users generate another public-private key pair,
called routing key. These routing keys are generated locally, and
do not require any global coordination. In fact, it should not be
possible to map a user’s routing key to their communication key,
otherwise, the user’s anonymity can be compromised (using an
“Intersection Attack”, Section 3.5).

When user
 joins a group �, it periodically sends a message
to the channel listing other channels that it is joined to. This
message serves as a routing advertisement, and will be used to
efficiently send messages along the lower levels of the � tree.
In general, the advertisements from a node contains the set of
channels it can directly reach, the set of channels it can reach
using one other node, and so on. In effect, these � routing keys
generate “lateral” edges in the tree. In Section 5, we show that
typically, each user needs to join only a few groups (�
) for

4

any two users in �� to have short paths (� � channel crossings)
between them with high probability.

We note that a user joins a set of groups only when it en-
ters the system, and should not change the set of channels it is
part of. Otherwise, once again, yet another intersection attack
becomes feasible that can compromise their anonymity. Each
group joined by a user corresponds to a one hop peering in the
underlying network2; we call the set of these peerings the phys-
ical connectivity graph, and denote it with � .

3.3 Signal and Noise

Our description of the �� protocol is nearly complete: however,
we still need a crucial piece. Assuming packet sources cannot
be traced from the broadcast messages (See Section 4 for the
precise packet format), the protocol as described provides sender
and receiver anonymity. We assume that each messages is of the
same size and is encrypted per-hop, and thus it is not possible to
map an outgoing message (packet) to a specific packet that the
node received in the past. However, a passive observer can still
mount an easy statistical attack and trace a communication by
correlating a packet stream from a communicating source to a
sink.

Thus, we add the notion of noise to the system. The noise
packets should be added such that a passive correlation at-
tack becomes infeasible. There are many possible good noise-
generation algorithms, and we use the following simple scheme.

Each �� user, at all times, generates fixed amount of traf-
fic destined to channel chosen uniformly at random. A packet
transmitted from a node is one of the following:

� A packet (noise or signal) that was received from some
incoming interface that this node is forwarding onto some
other channel(s). (The precise forwarding rule for �� is
described in Section 4).

� A signal packet that has been locally generated.

� A noise packet that has been locally generated.

Note that to an external observer, there is no discernible dif-
ference between these three scenarios. In general, only the
source and destination of a communication can distinguish be-
tween noise and signal packets. They are treated with equal dis-
dain at all other nodes.

Message Dropping Algorithms In any communication
system without explicit feedback, e.g. our channel broadcasts,
message queues may build at slow nodes or at nodes with high
degree. In ��, members may simply drop any message they
do not have the bandwidth or processing capacity to handle.
The global properties of the system depend upon how messages
are dropped. We have considered two different dropping algo-
rithms:

2Clearly, these are one hop “transport level” peerings, and not one
“physical hop” peerings.

� Uniform drop: This is the simplest scheme in which mes-
sages from the input queue are dropped with equal prob-
ability until the input queue size is below the maximum
threshold.

� Non-uniform drop: In this scheme, messages which are
destined to a channel higher up in � are dropped preferen-
tially.

We have experimented with several variations of this
scheme; the specific scheme which we use for our sim-
ulations drops packets destined for higher nodes with an
exponentially higher probability.

If most of the end-to-end paths in a �� network can use
“lateral” edges, i.e. between channels at the same logical
height, then this scheme provides lower drop rate. How-
ever any communication that must use “higher” channels
have proportionately high drops.

3.4 Anonymity Analysis
Assume node � has joined the � at node ��	��. Let����	���
be the set of members who receive a broadcast message sent to
channel ��	��. (Recall that this set includes all members of
group ��	��, all members of the groups below ��	��, and all
members of groups on the path to the root of �).

Claim 3.1 The anonymity of a node communicating using chan-
nel ��	�� is equivalent to the set of members who are part of
����	���.

Proof.
We consider the sender-, receiver-, and sender-receiver

anonymity cases separately.

� Sender Anonymity

Sender anonymity is the size of the set of the nodes that
could have sent a particular packet to a given host (say
�). A receiver who can only monitor their own links can-
not determine the source of a packet since this information
is never included in the packet. A receiver, in collusion
with a all-powerful passive adversary, however, can enu-
merate the set of nodes who could have sent the packet
by computing the closure of the set of nodes who have a
causal relationship with �. (In this case, nodes � and �
are causally related if � sent a packet to �). This closure
would be computed over some finite time window on the
order of the end-to-end latency in the system.

However, in ��, a user connected to ��	�� sends pack-
ets at a constant rate (signal or noise), and these pack-
ets are received by all users in ����	���. Thus, there
is a causal relationship between every user in a broadcast
group. However, inter-channel routers transmit packets be-
tween channels, and over time every node in the system is
causally related to every other node in the system.

Suppose a malicious receiver tries to expose a sender.
It can, at best (assuming there are no other cross chan-
nel packets), causally relate packets to its own broadcast

5

group. Further, if the receiver is able to determine and
compromise the router node, then the sender anonymity
becomes the effective broadcast group of the sender.

In case the receiver cannot compromise the channel router
node, the sender’s anonymity is the size of the entire sys-
tem, even in the presence of an all-powerful passive adver-
sary.

� Receiver Anonymity

When
 sends a packet to � at channel ���	���, ev-
ery member of �����	���� receives the packet. From
the perspective of an external observer, the behavior of the
system is exactly the same whether � receives the packet
or not. Thus, �’s receiver anonymity is exactly equiva-
lent to the set of all users who receive the packet, namely
����	���.

� Sender-receiver anonymity

Since all nodes in the system send at a constant rate, and
all packets are pair-wise encrypted between each hop, we
claim that it is impossible for a passive observer to distin-
guish noise from signal packets. Since the observer cannot
distinguish signal packets, it cannot discern if or when

communicates, and thus, it cannot determine when
 is
communicating with any other node �.

�

Assume that the rate at which some user
 sends packets does
not change when it is sending signal versus noise packets. In
this case, the distribution of packets, whether they are signal
packets or noise, does not affect the security of the node. Thus,
a nice property of our system is that the anonymity of any node

 depends only upon the length of the mask that
 is willing to
respond to.

3.5 Attacks
In this section, we outline a number of attacks that a system like
�� must guard against, and show why �� is invulnerable to all
these attacks.

� Correlation Attack: We have already alluded to this at-
tack in which a passive observer is able to (statistically)
track signal packets from a source to a destination, thus vi-
olating sender-receiver anonymity. In �� the noise pack-
ets thwart this attack.

� Intersection Attack: If an adversary knows that a user is
two different sets � and � , then the anonymity of the user
is reduced to � 	 � . If users are uniformly distributed
across such sets that can be intersected, then the anonymity
for any user in these reduces exponentially with the num-
ber of intersecting sets. For example, suppose users com-
municate using both their routing keys and their communi-
cation key. With each key, there is a corresponding set of
users who may own that key. This leads to an intersection
attack. This is the reason a user communicates with only
one key in ��, and routing keys cannot be mapped back to

the communication keys. Note that this is also the reason
users cannot increase their anonymity beyond the smallest
set they have ever been mapped to.

� Difference Attack: If an adversary can map the user to
some set and can assert that the user is not in some other
set, then it can map the user to the difference between these
two sets.

For example, suppose user
 has revealed an � bit mask.
In this case, it should not respond or react to packets sent
to any group ��	��� where �� � �. If
 does respond to
such packets, then
 is divulging where in the � it is not.
That is because the receiver set of ����	���� is smaller
than the receiver set ����	���, and now an adversary
knows that
 is not in the set ����	���
 ����	����.

� DoS attack: Suppose a malicious user wants to reduce
the efficiency of the system by sending a large number of
useless packets. �� can withstand this type of an attack
since we impose a per-link queue limit, and all the extra
packets from the malicious user will be dropped at the very
first hop. Note that even the local broadcast group is not
affected by a DoS attack as long as the first non-colluding
hop correctly implements its queue limits.

� Mob attack: In this case, a (set of) malicious users (the
mob) collude to try to expose some user
. These users
can all join the same channel as
, and reduce the effi-
ciency of the channel. This can cause
 to expose more
bits of its mask or cause other legitimate users to leave
the channel. In either case, the mob has reduced
’s
anonymity to the set of remaining legitimate users.

This is a difficult attack to handle in a system which pro-
vides anonymity, since it is (hopefully) not possible to map
public keys back to individuals. In ��, this attack can be
handled by choosing a security parameter larger than the
size of largest mob.

Note that in practice, it may be possible for a single at-
tacker to spoof multiple addresses. However, since we
use unicast and each member of the group must commu-
nicate with others, all these addresses must actually exist
on the network. In practice, however, it is unlikely that
an attacker can co-opt addresses from many different Au-
tonomous Systems (ASs); and
 can thwart this attack by
ensuring that there are enough different ASs represented in
the channel that it responds on. However, an all-powerful
active attacker can mount this attack from enough differ-
ent ASs to expose any user. Thus �� is susceptible to ad-
versaries who can actively manipulate (e.g. by generating
packets from arbitrary ASs) large parts of the network.

4 Details
In this section, we present details from our implementation of
��. We have implemented �� in a packet level simulator, but
the details from our implementation would be useful in a “real”
implementation as well.

6

Packet Format We use fixed length packets of size 1 KB.
The fixed packet length is used to eliminate any information an
adversary can gain by monitoring packet lengths.

The �� header only contains the identifier for the first hop
destination channel (a ��	�� pair). (It could, equivalently, also
contain the ultimate destination, but we chose the first-hop des-
tination in cleartext option). In our implementation, � is a 32 bit
unsigned integer, and� is a 6 bit integer. If the packet is a signal
packet, the rest of the packet is encrypted using the next hop re-
ceiver’s public key. Since packets may need to be encapsulated,
and each packet is the same size, each packet also contains a
padding field which is the size of the �� header.

The data part of the �� packet contains a set of fixed size
“chunks” each of which is encrypted with the receiver’s public
key. These chunks are formed naturally by many public-key en-
cryptions. The decrypted data part of the �� packet contains a
checksum which the receiver uses to determine whether a packet
is destined for itself or not. Each chunk can be decrypted inde-
pendently; thus, a receiver does not need to decrypt an entire
noise packet, it can discard a packet as soon as the first chunk
fails its checksum. For efficiency, the first chunk of a signal
packet may also include a symetric cipher key for use in de-
crypting the other chunks, as symetric cipher decryptions tend
to be faster than asymetric ones.

Regardless of whether a packet decrypts properly, the receiver
schedules each packet for further delivery within the local chan-
nel using the forwarding rule described below.

The first chunk of a signal packet contains an encrypted bit
which determines whether a packet should be forwarded onto
some other channel, or whether the packet is destined for the
current node. It also contains a channel identifier for the ultimate
destination for the packet, which the current node uses to choose
an outgoing channel.

When a node receives a packet with the “forward” bit set, it
interprets the rest of the data as another �� packet, and if pos-
sible, forwards it onto the specified channel. In the forwarding
step, the process at a channel router is different depending on
whether the packet is at its ultimate channel or not:

� If the packet is not at its final channel, the current node
replaces the first chunk with a new chunk in which the
“forward” bit is set, sets the proper ultimate destination
channel, and encrypts this chunk with the public key of the
next hop.

If the packet is already is the destination channel, then the
data part of the packet is already formatted with the proper
address and has a valid first chunk encrypted by the public
key of the intended recipient. The current node adds a last
chunk at end of the packet with random bits to increment
the packet length to the fixed system size.

If the “forward” bit is not set, then this signal packet is delivered
locally.

Forwarding within a channel Since each logical channel
is a tree, each node can use the following simple forwarding

algorithm to forward a packet � sent to some arbitrary ��	��
channel on �.

Forward � to a peer on channel � iff only if � did not
come in on � and if � passes the min-common-prefix
check with respect to ��	��.

Note that it is important that the output order of the packets
not be determined by the input order, else it becomes possible to
correlate packets across successive nodes and trace communica-
tion between two parties. In other words, each node should act
like a mix [1].

4.1 Member Security and Join Procedure
Analogous to the definition in [8], we define anonymity for a
user
 as the set � of users in the group who are “indistinguish-
able” from that
, i.e., no other user or a passive adversary can
resolve messages from
 to a granularity finer than �.

We assume that each user � requires a minimal acceptable
level of anonymity, i.e. each user requires their corresponding �
set to be of a minimum size. We call this minimum set size the
security parameter, and denote it with ��. Each user �may also
define a maximum required level of security (i.e. a maximum
size of the corresponding � set) since this provides a bound on
the communication inefficiency. We call this the efficiency pa-
rameter, and denote it with ��. User
 joins group ��	��, s.t.
�� � �����	���� � �� in the following manner:

�
 initially joins ��	��. If �� � ����	���� � ��,
we’re done.

If �� � ����	����,
 the entire system does not have
enough members to provide the requisite anonymity.

forwards packets for other nodes and sends noise packets,
but does not directly communicate with other nodes.
If ����	��� � ��, then this group has too many members,
and
 joins the appropriate channel of the form ��	��.

�
 repeats this procedure until it finds a ��	�� such that
�� � �����	���� � ��.

Clearly, it is possible to choose incompatible values � and
� such that � � �����	��� and � � �����	�� ����.
In this case, the user can either change their security or ef-
ficiency parameter or wait in channel ��	� � ��, until � �
�����	�� ����.

In our simulations, each user can determine the number of
people in a group by consulting an “oracle” which maintains an
up to date list of channel memberships. In implementation, this
information can be maintained in a secure distributed manner,
either by the underlying application-layer multicast primitive,
or at a well-known centralized “topology server”.

The “topology server” construct is needed if it is not possi-
ble to infer approximate group sizes. The topology server keeps
pairs of the form ���	�� � �� ��������. It is possible for the
topology server to expose a user by providing false information
(reporting a group is large when it is in fact not). For extra
security, the topology information can be replicated at � differ-
ent topology servers. A user would only consider the minimum

7

group size reported by all topology servers; this way, a user can
withstand up to �
� colluding malicious topology servers. Sim-
ilar techniques can be used to handle malicious topology servers
who return a value smaller than the actual group size (to make
the communication inefficient). Lastly, note that the topology
servers can also be used to find users on a specified channel,
which is needed when a new user joins a channel.

4.2 Migration up and down �

Suppose
 is connected to ��	��, and initially
�� � �����	���� � ��. As users join and leave
the system, it is possible for the channel ��	�� to violate
’s
security or efficiency parameter. If
’s efficiency parameter is
violated,
 can migrate to group ��	�� ��.

Unfortunately,
 does not re-gain any security by migrating
“up” � (i.e. by decreasing �) since an intersection attack fixes
�� to the size of the smallest channel that
 was part of since
it initially joined. Thus, in common use, we assume users do
not leave once they join and if a group becomes too small, all
remaining users have to recreate a new hierarchy. Note that they
must then use a new communication key, since a passive ob-
server along with a colluding receiver can mount an intersection
attack.

4.3 The Network Abstraction and Process-
ing Requirements

In this section we describe the precise networking requirements
of ��. It was our design goal for �� to be easily implementable
using the current Internet protocols, as such our networking re-
quirements are meager.
�� requires the implementation of broadcast channels in

which the source address cannot easily be determined. This can
be efficiently implemented using a application-layer multicast
protocol. The transport level requirements of �� are minimal,
and UDP would suffice as the transport protocol for�� edges on
the � topology. Lastly, note that during normal operation, ��

members only remain joined to the same set of channels; they
only change channels if the overall security policy changes or if
the group dynamic changes drastically. Thus, the signaling load
due to �� is low, and since the topologies within each channel is
relatively static, the �� tree can be optimized to map efficiently
on to the underlying physical topology.

Host Requirements �� requires state, processing, and link
bandwidth at each host. We discuss these requirements in turn:

� Suppose member
 communicates using channel ��	��
at depth � in �. In order to communicate within the group,

 may have to maintain next hop information about ��

groups. For small � (e.g. � ��), the state requirements
are minimal. Note that unlike an IP router,
 does not
have to search its “routing table” for every packet; it only
searches this table when it initiates a new data connection.
Thus, this table can be maintained in secondary storage.

If � is large (e.g. � �), it may not be feasible for a node
to maintain information about all �� peer channels. In this
case,
 could maintain a small cache of advertisements,
and if a new communication requires a channel that is not
in the cache,
 would have to wait until it hears another
advertisement for that channel.

� There is a single public-key decryption for every packet
that member
 receives . Further,
 has to encrypt every
signal packet during communication. However, in general,

 does not have to encrypt noise packets; it is only nec-
essary that the adversary not be able to distinguish noise
packets from signal packets. Thus, it is feasible for
 to
generate noise packets using a good local random number
source.

� The broadcast nature of �� requires individual group
members to (potentially) devote more bandwidth for
communication than pure unicast (or systems such as
Crowds [8]). However, the extra bandwidth directly results
in enhanced anonymity, and, obviously, individual users
may choose a more bandwidth efficient channel if they are
willing to sacrifice some anonymity. We analyze the actual
bandwidth usage and how it scales with number of group
members and different security parameters in Section 6.

5 The Random Channels Model
In this section, we present an analysis of the paths in a �� net-
work. Let � be the number of users in the system, and sup-
pose there are � channels available in total. For some integer �
(which is typically small—at most �), each user � independently
chooses � random channels without replacement: we will denote
this random set of � channels by ����. Two central parame-
ters for us will be: (i) �, the maximum “hop-count” between
any � users, which is the maximum communication distance be-
tween any two users, and (ii) ��� and �	
, the minimum
and maximum load (number of users) on any channel. Note that
 ��� and �	
 are different than the security parameters as
they count only the set of users local to a channel, while the
security parameters count the set of users in all channels that
provide anonymity for a given user. We next discuss these two
parameters.

The parameter �. We say that there is a path � �
��� ��� ��� � � � � �� � ! between two users � and !, if for each
", users �� and ���� choose a channel in common. The length
of such a path is defined to be #, and the minimum length of any
path between � and ! is the distance or hop-count between � and
!; if there is no such path, then this hop-count is defined to be
�. We are interested in bounding �, the maximum hop-count
between any two users.

The load parameters ��� and �	
. Define the load on a
channel to be the number of users who chose it among their �
random channels; let ��� and �	
 respectively be the mini-
mum and maximum loads on any channel. A lower bound on the
former is needed to guarantee the security of the system, and an

8

upper bound on the latter is required to show that the bandwidth
overhead is not significant.

Given the above discussion, our basic goals will be as follows.
Clearly, we simultaneously want “small” �, a value of ��� that
is “not too small”, and �	
 being “not too high”. It is easy
to see that the expected load on any given channel is exactly
� � �	�. Thus, �	� is a natural parameter to study our system
with. So, we will consider scenarios where � is constrained to
be at most some given value�, and �	� is required to be at least
some given value $. So, the primary parameters are �, �, and
$. Given these, and for any choice of ��� �� for which � � �
and �	� $, we aim to show that the system has the above-
sketched satisfactory properties w.r.t. �, ���, and �	
.

More concretely, we will proceed as follows. Fix % � ��
,
say. Let �� denote the desirable event that “(i) all the channel
loads are within �� % of the expected value �$, and (ii) � � &”.
We derive the following sufficient conditions for �� to hold (for
& � ��
) with a probability of at least �
 ����:

1. & � �: two sufficient conditions are

(P1) � �
, $ ���, and � � ���; or

(P2) � � 	, $ ��, and � �
��.

2. & �
: two sufficient conditions are

(P3) � �
, $ ���, and � � ���; or

(P4) � � 	, $ ��, and � � ���.

We now prove that these conditions are indeed sufficient, in the
rest of this section.

5.1 Analysis Approach
In our analysis, we will frequently use the union bound or
Boole’s inequality: ����� ��� � � � � ���� �

��

���
������.

The parameters ��� and �	
 are much more tractable
than �, so we handle them first. Let ����'� denote (
. It
is an easy consequence of large-deviations bounds such as the
Chernoff-Hoeffding bounds [3, 7] that for any given channel �
and any parameter % � ��� ��, its load ��� satisfies:

��� ��� �� ���
 %� � ��	�� �� � %� � ��	���

� ����
�%�	� � ��	��� �

����
��%�	�
 %�	�� � ��	���

� ����
�$%�	�� � ����
�$�%�	�
 %�	����

Now, a simple application of the union bound yields

���� ��� ��
 %� � ��	��
�

� �	
 � �� � %� � ��	���

� � � ����
�$
%�

�
� �� � ����
�$�

%�

�

%�

�
��� (1)

We next turn to bounding �. We cannot directly draw on the
rich random graphs literature, since we are working here with
a certain model of random hypergraphs with possibly repeated

hyperedges. We next study the two requirements of most inter-
est: � � � and � �
. As can be expected, the second case
involves more work than the first. Our basic plan is as follows.
Lemma 5.1 gives an upper-bound on ���� � ��, and Lemma 5.2
gives an upper-bound on ���� �
�. Then, letting � denote the
complement of event � , we see by the union bound that ������
is upper-bounded by the sum of (1) and the probability bound
given by Lemma 5.1. Similarly, ������ is upper-bounded by
the sum of (1) and the bound given by Lemma 5.2. We shall do
this “putting together” in Section 5.4.

5.2 The Requirement � � �

Here, we want sufficient conditions for “� � �” to hold with
high probability. In other words, we want to show that for any
two users, there is a path of length at most � between them.
To do so, we fix distinct users � and !, and upper-bound the
probability � that there is no path of length � between them;
then, by the union bound, the probability of � � � is at most�
�

�

�
� �, since there are only

�
�

�

�
choices for the unordered pair

��� !�. Thus, we need to show that � is negligible in comparison
with �

�
�

�

�
���, which we proceed to do now.

Our plan is to condition on the values of ���� and ��!�. For
each such choice, we will upper-bound the probability that there
is no user (among the remaining ��
 ��) who chose a chan-
nel that intersects both ���� and ��!�. Then, the maximum
such probability is an upper-bound on �. Fix ���� and ��!�. If
���� 	 ��!� �� �, then � and ! are at distance �; so suppose
���� 	 ��!� � �. In particular, we may assume that � ��.

Consider any other user). What is the probability of)’s
random choice ��)� intersecting ���� and ��!�? The total
number of possible choices for) is

�

�

�
. The number of pos-

sible intersection patterns can be counted as follows. Suppose
���)� 	 ����� � " and ���)� 	 ��!�� � *, where "� * �
and "� * � �. The remaining �
 �"� *� elements of ��)� are
selected at random from outside ���� � ��!�. Thus,

������)� 	 ���� � ��
�

���)� 	 ��!� � ��� � �
 +��� ���

where

+��� �� �

�
�����	 �����

�
�

�

��
�

�

��
���

�����

�
�

�

� �

Thus, since different users) make their random choices inde-
pendently, we get that � � ��
 +��� ������ � ����
��

��+��� ���. Thus, as discussed above, a union bound yields

���� � �� � ���	�� � ����
��
 ��+��� ���� (2)

In order to see what this bound says for various concrete val-
ues of our parameters �� $� �, we develop:

Lemma 5.1 Suppose $ ��	�����
 ��� and � ����.
Then, ���� � �� � ���($��	�� � ����
�������
 ��$	��.

9

Proof. (Sketch.) Since +��� �� ��
�
���

���

�
	
�

�

�
, bound (2)

shows that

���� � �� � ���(�	�� � ���

�

���

�
�
 ��

�
 �

�
	

�
�

�

��
�

We can now do a calculation to show that subject to our con-
straints (which includes the constraint that � ��), this bound
is maximized when � � � and � � $�. Further simplification
then leads to the bound of the lemma.

�

5.3 The Requirement � � �

We now adopt a different approach to get an upper-bound on
���� � 	�. Let � denote our set of � channels. For a set
 � �
with �
� � �, define � �
� to be the set of all � � ��

� for
which the following holds:

�' � �� � ��'��
�

���'� 	
 �� ���

In other words, � �
� is the set of channels that lie outside of
,
but which lie in some set ��'� that intersects
. Thus, we need
to show that with high probability, at least one of the following
four conditions holds for each pair of users � and !: (i) ���� 	
��!� �� �; (ii) ����	� ���!�� �� �; (iii) � ������	��!� �� �;
or (iv) � ������ 	 � ���!�� �� �. To do so, we will instead
show that with high probability, all
 � � with �
� � � will
have �� �
�� � &, where & � ���
 ���	��. It can be verified
that this implies that at least one of the conditions (i), (ii), (iii)
and (iv) will hold for all �� !.

Fix
 � � such that �
� � �. Let us bound ����� �
�� � &�.
Now, for any fixed � � ��

� such that ��� � �
 �
 & �
��	��, a calculation can be used to show that

���� �
� 	 � � �� � �����
��	�� � �������� (3)

We summarize with

Lemma 5.2 Suppose $ ��	�����
 ��� and � ����.
Then, ���� �
� � ���� ��� � ����
��$	��.

Proof. (Sketch.) A union bound using (3) yields

���� �
� � ����
 � �� �
�� � &�

�

�
�

�

�
�

�
�
 �

��	��

�
� �����
��	�� � �������

� � � �� � �����
��	�� � ��������

A calculation shows that subject to our constraints, this bound is
maximized when � � � and � � $�. Further simplification
completes the proof. �

5.4 Putting It Together

Now, as described at the end of Section 5.1, we just do routine
calculations to verify the following. First, if & � � and any one
of (P1) and (P2) holds, then the sum of (1) and the probability
bound given by Lemma 5.1 is at most ����. Similarly, if & �

and any one of (P3) and (P4) holds, then the sum of (1) and the
probability bound given by Lemma 5.2 is at most ����. This
concludes our proof sketch about these sufficient conditions for
�� and �� respectively to hold with high probability.

6 Simulation Results

In this section, we present results from a packet-level �� simu-
lator. Our simulator is written in C, and can simulate the entire
�� protocol with thousands of participants. We designed and
implemented five basic experiments:

� Measure system performance as the number of participants
increase; specifically, we measure the end-to-end band-
width, latency, and packet drop rates as the number of users
in the system is increased

� Measure the effect of the security and efficiency parameter
on communication efficiency

� Estimate the amount of time it takes �� systems of a given
number of participants to converge (i.e. how long does it
take a user to find a channel that satisfies their security and
efficiency constraints)

� Measure the effects of different noise generation rates and
queuing disciplines

� Measure how the system behaves when increasing num-
bers of nodes engage in end-to-end communication

Simulation Methodology For each experiment, we gener-
ated a random physical topology. We did not model different
propagation delays between pairs of nodes; instead, we assumed
unit propagation delay between any two nodes. Since all inter-
node latencies are the same, our simulation proceeds using a
synchronous clock. At every tick, all packets sent from every
node is received at their destination.

We assume an unbounded input queue length and a bounded
output queue. All packets received at a node at a given time
step are processed. Some of these packets may be queued at ap-
propriate output queues, and a subset of them may be delivered
locally. Next, each node generates a set of outgoing packets and
enqueues these on the output queues. We then impose the out-
put queue limit and according to the queuing discipline, discard
packets if any output queue is larger than its maximum specified
size. Note that during the discard phase, the node does not dis-
criminate whether it is dropping its own packets or packets from
some other node. All remaining packets at an output queue are
delivered in the next time step to the next hop node.

Since all packets queued at a node are delivered at the next
time step, the output queue size serves as a measure of both the

10

processing and bandwidth requirements at a node. We instru-
mented the simulator to record the end-to-end latencies (number
of simulator ticks), drop rates and bandwidth, end-to-end hop
counts, number of channel crossings, and convergence times. In
the rest of this section, we report results from individual experi-
ments.

6.1 Scalability

0

0.1

0.2

0.3

0.4

0.5

10 100 1000 10000

D
ro

p
R

at
e

Group Size

Sending rate: 1/S
Sending rate: log S/S

Figure 2: Loss rate vs. number of users

0

0.2

0.4

0.6

0.8

1

1.2

10 100 1000 10000

Group Size

Avg. number of channels

Figure 3: Average number of channels

In Figure 2, we plot the end-to-end loss rate as the number of
users in the system is increased. In each case, there is only one
pair of communicating nodes; all other nodes only send noise
packets. For each group size, we chose ten different random
seeds and created ten different topologies. For each topology,
we chose three different sender-receiver pairs. Each point on
Figure 2 is an average of all these runs (24 for each topology

size). Unless otherwise noted, we choose the values of security
parameters as � � ���, and � �
��, and implement non-
uniform queuing. All nodes in the system were connected to two
channels, i.e. they had one communication key and one routing
key.

There are two different curves, each corresponding to two dif-
ferent sending rates. In the “Sending Rate=1/S” case, each node
generates a packet at each time stop with probability �	�, where
� is the size of its current broadcast group. Analogously, in the
“Sending Rate=�� �	�” case, each node generates a packet at
each time stop with probability �� �	�. For both cases, the
queue sizes at each node were very small: ������� �� ��.
From the plot, it is clear that the �	� sending rate can be sus-
tained in the system, and almost no signal (or noise) packets are
lost. However, as the sending rate is increased, the queues in the
system are saturated, and drop rates increase with group size.

In Figure 3, we plot the average number of channels that the
signal packets have to cross in order to reach their destination.
Note that in this case, each user only connects to � channels.
As predicted by the analysis in Section 5, the average channel
level hop count is very small, and is less than 1 for all our runs.
The average end-to-end hop count in these runs were � �
. The
worst case inter-channel distance that we encountered in these
runs was 2. This occurred in 4 out of 6000 signal packets sent.

Analysis In our simulations, the average size of each local
broadcast group in these experiments is approximately ���, and
the average queue size is around the minimum (10). In the worst
case, each queue is always full, and the nodes have to handle two
full queues worth (20 packets) per tick. Each tick in our system
corresponds to an end-to-end propagation delay. Assume that
this delay is on average on the order of 100ms. Thus, these
nodes would have to handle up to 200 packets per second. At
1000 bytes per second, this translates to 1.6 Mbps of bandwidth
and the ability to handle two hundred 1000 byte public-key de-
cryptions per second. The processing capability required is triv-
ial compared to the power of current processors. The bandwidth
required is somewhat more of a concern; however, note that in-
dividual users can always reduce their bandwidth requirement
by migrating “lower” in the tree. The “Sending Rate=1” corre-
sponds roughly to each node sending at 16Kbps (with essentially
no packet loss). If nodes are willing to incur higher packet loss,
then the sending rate can be much higher, e.g. for the 8192 user
case, users can send at up to 200 Kbps if they are willing to han-
dle upto 40% packet losses. Note that these losses accumulate
over about 13 hops, which is the average end-to-end path length
in these simulations.

Thus, in a 8192 node �� network, any subset users can
anonymously communicate at hundreds of kilobits per second
(with relatively high packet losses), if they invest approximately
2 Mbps of bandwidth. Clearly, the loss rate is high compared
to the communication media we are used to, but we have to re-
member that in ��, the user is gaining anonymity of at least
100 other users. In a pure broadcast system with 8192 users and
these same parameters, the average end-to-end loss rate would
be about �
 ����
; communication in this system would, es-

11

sentially, be impossible. (In such a system, to achieve a 50%
average end-to-end loss rate, the sending rate per user would
have to be � 1 packet/8 seconds. Of course, each user is also
gaining anonymity from all other users in the system).

In Section 6.3, we discuss the effects of varying the sending
rate while the bandwidth and group sizes are fixed.

6.2 Convergence Times

Group No. of Security No. of
Size rounds Parameter rounds
64 0 16 6

128 0 32 5
256 1 64 4
512 2 128 3
1024 3 256 2
2048 4 512 1
4096 5
8192 6

Table 1: Convergence times

In Table 1, we present the convergence times for �� in our
simulator. There are results from two different experiments in
the Table; in the experiment we fixed the security parameters (at
� � ���� � �
��), and varied the number of users. In the
second experiment, we fixed the number of users at 1024, and
varied the security parameter (�). In all cases, we used � �
�.

In all experiments, all the users join simultaneously at time
0. Each user migrates down the � tree in rounds. Each round
consists of 10 simulator ticks, and each user only makes a single
migration decision in any one round. As expected, the conver-
gence times increase as the number of users increase (or the �
parameter is decreased) since each user settles “lower” down in
�. However, in all cases the number of rounds to converge is
given by ������ �� �
 �� ��.

6.3 Noise and Signal Generation

In Figure 4, we vary the sending rate while keeping all other pa-
rameter fixed. We monitor a single sender–receiver pair, and re-
port the observed packet loss. We use the two base sending rates
from Section 6.1, and linearly increase these rates by the rate
multipliers plotted on the '-axis, while keeping the link band-
widths constant. As expected, the drop rates increase linearly
with increases in sending rate. Interestingly, the non-uniform
drop rates perform slightly better as the sending rates increase.

In Figure 5, we repeat the same experiment and vary the num-
ber of sender-receiver pairs in the system. The rest of the users
still generate noise at the same rate (�� �	�). We plot the av-
erage drop rate across all of the sender-receiver pairs. As ex-
pected, the drop rate is not affected by the number of sender–
receiver pairs, and thus, no extra information is divulged to a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100

D
ro

p
R

at
e

Sending Rate Multiplier

Uniform Queuing, Base rate: 1
Non-uniform Queuing, Base rate 1

Uniform Queuing, Base rate: log S/S
Non-uniform Queuing,Base rate log S/S

Figure 4: Loss rate vs. sending rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250

D
ro

p
R

at
e

Number of simultaneous sender-receiver pairs

Sending rate: 1/S
Sending rate: log S/S

Figure 5: Loss rate vs. number of senders

passive observer when more people in the system communicate.
We have also experimented with different values of � and �.
As expected, the drop rate increases as users choose higher val-
ues of the security parameters, since they are mapped to larger
broadcast groups.

7 Conclusions

We divide our conclusions for �� in to two parts.

7.1 Observations

�� is a protocol for anonymous communication over the Inter-
net. �� allows secure anonymous connections between a hi-
erarchy of progressively smaller broadcast groups, and allows

12

individual users to trade off anonymity for communication effi-
ciency.

In developing ��, we found an interesting property relating
communication latency, bandwidth usage, and anonymity. In
general, we found it was easy to construct protocols that pro-
vided two out of these three properties, e.g., consider plain uni-
cast communication: it provides low latency and high bandwidth
usage, but does not provide anonymity. Now consider multicas-
ting to a set (using per-source shortest path trees) in which the
message is intended for only one member of the group. This so-
lution provides low latency; however the bandwidth utility de-
creases as the anonymity and unlinkability increases. �� has
the interesting property that it allows individual users to trade-
off these three properties on-line.

We designed �� to be scalable and compatible with current
Internet protocols. Our simulations show that �� can scale to
large groups, and our analysis shows that �� will maintain its
“short paths” property with very little extra overhead for ex-
tremely large groups. Our current work is to adapt lower over-
head noise generation algorithms to further improve scalability;
provide better reliability by considering more connected struc-
tures within individual groups; and to build a prototype for de-
ployment around the Internet.

7.2 A Note on Ethics

There may be some questions about why a system like �� is
needed. Clearly, privacy over the Internet is an important and
open issue, and �� is a first step towards a truly scalable anony-
mous network layer over IP. There are a number of applications,
e.g. anonymous web transactions and anonymous re-mailers,
where sender- and receiver-privacy is all that is required. ��,
however, also provides sender-receiver privacy, and like all tech-
nologies, this can be used in a malicious manner. We have de-
cided to include sender-receiver privacy in �� for the following
reasons:

� We believe it is important to study these protocols, simply
to learn what levels of anonymity are feasible over a public
network such as the Internet.

� The protocol-steps in �� that provide sender-receiver
anonymity can be decoupled from the rest of the protocol,
and �� can be used in sender-, receiver-anonymity mode
only. It is an orthogonal ethical (and possibly political) de-
cision as to whether �� should be implemented to provide
sender-receiver anonymity.

� We describe an attack that can be mounted by an powerful
active adversary, specifically an adversary who can inject
packets on a arbitrary set of network links. �� fails under
such an attack.

Acknowledgments. We thank the referees for their helpful com-
ments.

References
[1] David Chaum. Untraceable Electronic Mail, Return Ad-

dresses, and Digital Pseudonyms. Communications of the
ACM, 24(2), 1981.

[2] David Chaum. The Dining Cryptographers Problem: Un-
conditional sender and recipient untraceability. Journal of
Cryptology, 1(1):65–75, 1988.

[3] H. Chernoff. A measure of asymptotic efficiency for tests
of a hypothesis based on the sum of observations. Annals
of Mathematical Statistics, 1952.

[4] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong. Freenet:
A Distributed Anonymous Information Storage and Re-
trieval System. In International Workshop on Design Is-
sues in Anonymity and Unobservability, LNCS 2009, 2001.

[5] Sholmi Dolev and Rafail Ostrovsky. Xor-Trees for Efficient
Anonymous Multicast Receiption. Advances in Cryptogra-
phy - CRYPTO 97, 1997.

[6] David M. Goldschlag, Michael G. Reed, and Paul F. Syver-
son. Onion routing for anonymous and private internet
connections. Communications of the ACM, 42(2), Febru-
ary 1999.

[7] W. Hoeffding. Probability inequalities for sums of
bounded random variables. American Statistical Associ-
ation Journal, 58, 1963.

[8] Michael K. Reiter and Aviel D. Rubin. Crowds:
Anonymity for Web Transactions. ACM Transactions on
Information and System Security, 1(1):66–92, 1998.

[9] Clay Shields and Brian Neil Levine. A protocol for anony-
mous communication over the Internet. In Proceedings of
the 7th ACM Conference on Computer and Communica-
tions Security (CCS-00), pages 33–42, N.Y., November 1–
4 2000. ACM Press.

[10] Michael Waidner and Birgit Pfitzmann. The Dining Cryp-
tographers in the Disco: Unconditional Sender and Recip-
ient Untraceability with Computationally Secure Service-
ability. In J.-J. Quisquater and J. Vandewalle, editors, Ad-
vances in Cryptology—EUROCRYPT 89, volume 434 of
Lecture Notes in Computer Science, page 690, April 1989.

13

