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Abstract
Medical devices based on embedded systems are ubiq-
uitous in clinical settings. Increasingly, they connect
to networks and run off-the-shelf operating systems
vulnerable to malware. But strict validation require-
ments make it prohibitively difficult or costly to use
anti-virus software or automated operating system up-
dates on these systems. Our add-on monitoring system,
WattsUpDoc, uses a traditionally undesirable side chan-
nel of power consumption to enable run-time malware
detection. In our experiments, WattsUpDoc detected pre-
viously known malware with at least 94% accuracy and
previously unknown malware with at least 85% accu-
racy on several embedded devices—detection rates sim-
ilar to those of conventional malware-detection systems
on PCs. WattsUpDoc detects malware without requiring
hardware or software modifications or network commu-
nication.

1 Introduction

Health care networks are composed of general-purpose
computers, (e.g., desktop workstations) and embedded
devices that perform specific functions and connect to
the network for centralized control or configuration. A
primary drawback of increasing connectivity is that all
devices on the network—including embedded devices—
are increasingly exposed to malware [1, 25]. The U.S.
Food and Drug Administration has recently acknowl-
edged these risks by issuing a safety communication con-
cerning cybersecurity [27].

Unfortunately, many embedded devices are incom-
patible with conventional software-based anti-malware
mechanisms such as antivirus (AV) programs or net-
worked intrusion-detection systems (NIDS). Traditional
embedded devices commonly use custom firmware or
OSes for which no antivirus program exists. They are
also subject to severe resource constraints that make con-
ventional AV techniques difficult to implement.

There is a second class of embedded medical de-
vices that are built with commodity hardware and soft-
ware and are thus compatible with AV or NIDS, but
their configurations are commonly off limits to their
owners because manufacturers will not support third-
party software. Some manufacturers explicitly forbid
device owners to install OS security updates or an-
tivirus software [2], under the impression that they can-
not certify a device’s safety if the software configuration
changes. This attitude contravenes the FDA’s advice in
the U.S. [26]. Worse, it precludes the minimally obstruc-
tive monitoring that system administrators depend on to
detect malware infections.

The fundamental tension for owners of these devices
is that they can have the devices they need to perform
critical functions, but they cannot adequately protect the
devices using conventional, software-based means. Fur-
thermore, the inaccessibility of system information on
these systems leaves IT administrators unable to generate
meaningful problem reports to submit to public incident-
tracking databases—resulting in systematic underreport-
ing of adverse events.

Kramer et al. highlight the disparity between the likely
number of adverse security events and the number of
available reports [19]. They examined two FDA adverse
event databases—populated voluntarily by healthcare fa-
cilities and manufacturers—and a Department of Vet-
erans Affairs (VA) database created for internal track-
ing of security and privacy problems. While the FDA
databases yielded almost no direct evidence of security
problems, the VA database recorded 207 confirmed mal-
ware infections over a 35-month period despite IT ad-
ministrators’ following the advice of manufacturers to
keep devices separate; the network implements thou-
sands of ACLs and uses VLANs extensively. This dis-
parity hints that other medical providers may have simi-
lar malware problems—but where are the adverse-event
reports? Kramer et al. conclude:
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While intentional interference may be much
less likely to manifest clinically than other
types of traditional malfunctions, it is clear
that no effective system exists to detect signals
of security or privacy problems. This conclu-
sion is confirmed by the sharp contrast of se-
curity and privacy problems tabulated by the
VA and the security and privacy problems tab-
ulated with FDA databases.

In light of the above problems, it is desirable for
owners to be able to monitor their devices’ behavior in
meaningful ways to support auditing and adverse-event
reports. This paper addresses the challenge of mal-
ware on embedded systems by introducing WattsUpDoc,
a behavior-monitoring system for embedded devices.
WattsUpDoc relies on the side channel of systemwide
power consumption, which leaks information about the
system’s computing activity without requiring any hard-
ware or software modifications. It is well suited to em-
bedded systems because of their typically constrained
state spaces, which manifest as a small set of discrete
power-consumption levels and probability distributions.

WattsUpDoc’s monitoring is based on machine-
learning techniques to match patterns of power consump-
tion. This paper evaluates WattsUpDoc’s approach on
two similar types of embedded hardware: a pharma-
ceutical compounder and an industrial-control worksta-
tion. Both run variants of the Windows operating system,
and both are designed to precisely control important pro-
cesses. We trained WattsUpDoc on power traces of both
normal and abnormal activity, and tested on unlabeled
samples of both behaviors. WattsUpDoc flagged abnor-
mal activity on the industrial-control workstation with
greater than 98% accuracy, and on the compounder with
greater than 94% accuracy. When tested on malware
for which WattsUpDoc was not trained, the accuracy
was 91.3% and 84.2% on the two devices respectively—
compared to the 55% detection rate of a commercial an-
tivirus product and the 86% detection rate of a recent
behavior-based malware detector [11], yet without re-
quiring software or hardware changes.

Using WattsUpDoc, device owners can gain greater
visibility into the behavior of the systems they own.
WattsUpDoc can provide preliminary evidence of abnor-
mal behavior, such as malware, signaling the need for
further investigation. With better visibility and earlier
warnings, WattsUpDoc can help address underreporting
of adverse events.

2 Vulnerable Embedded Systems

Embedded systems play a vital role in many operations,
from hospitals to industrial facilities where they control

physical infrastructure. These systems are commonly
“hands off” for customers, i.e., they prohibit customers
from changing software configurations, for several rea-
sons. First, manufacturers are unwilling to support soft-
ware that they did not install and have not validated.
Second, customers are disinclined to risk breaking sys-
tems that are working, when defending against unclear
threats has an unclear benefit. Third, many devices use
specialized hardware and software that may not match
customers’ assumptions.

The key challenge to resolving the tension between
functionality and the need to protect increasingly con-
nected devices is finding a way to monitor and validate
devices’ behavior without modifying them. More specif-
ically, given a device that may contract malware, the
challenges are: (1) inferring the device’s state without
instrumenting or otherwise modifying it; (2) recognizing
deviations from these acceptable states, ideally without
a database of known deviations; and (3) minimizing the
operational burden by avoiding false alarms.

The remainder of this section describes two examples
of embedded systems and outlines the threats that mal-
ware poses to them.
Medical devices. The category of medical devices en-
compasses a variety of clinical systems. Over half of
these devices include software [10], and many have
proven vulnerable to common viruses and malware [24].
Many vulnerable medical devices are directly respon-
sible for patient care, including tissue oximeters, fetal
monitors, and pharmaceutical compounders [1].

For this work, we tested a pharmaceutical compounder
(Figure 1) we obtained from an auction. A compounder
mixes precise amounts of liquid ingredients according
to pharmaceutical formulations. The compounder runs
Windows XP Embedded and custom mixing software. It
includes a network port for loading formulations from
the network in multi-compounder environments. It also
includes specialized hardware to support its mixing func-
tion, including a pump, pressure sensors, and a scale to
ensure that mixtures meet weight expectations.

The manufacturer expressly advises against the in-
stallation of software updates or other typical protec-
tions [2]. According to a security whitepaper by the man-
ufacturer, owners of the compounder should take some
precautions, namely a dedicated firewall and subnet per
device [2].1 The burden of installing a firewall for each
device, and the risk of the firewall interfering with device
communication, highlight the need for new approaches
to security in this domain. The anecdotal evidence from
a VA hospital suggests that this burden raises the bar too
high for IT administrators.

1The instance of the ExactaMix software on the compounder we
tested included network paths (for logfiles, etc.) indicating that the
compounder had been connected to a Windows network.
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Figure 1: Running on Windows XP Embedded SP2, our
Baxa ExactaMix 2400 pharmaceutical compounder is an
automated embedded system that mixes liquids to indi-
vidual specifications for intravenous parenteral nutrition.

Device Configuration

Baxa ExactaMix
2400 compounder

WinXP Embedded, Via
664 MHz , 512 MB RAM

Schweitzer SEL3354
substation computer

WinXP Embedded, Athlon
2600+, 2 GB RAM

Table 1: Devices against which we tested WattsUpDoc.

SCADA systems. In addition to a medical device, we
evaluated WattsUpDoc on a Supervisory Control and
Data Acquisition (SCADA) device designed for indus-
trial applications; the similar use cases result in similar
hardware and software configurations.

SCADA systems comprise hardware and software that
monitors and controls industrial processes. This work
considers a substation computer, which is a “ruggedi-
zed” commodity PC that controls programmable logic
controllers (PLCs) and other automation hardware via an
array of communication ports. It may also communicate
with a larger network via Ethernet or similar. Substation
computers typically run “embedded” versions of main-
stream operating systems. We tested a substation com-
puter running Windows XP Embedded.

2.1 Threat Model
Because they incorporate both embedded and general-
purpose computing devices, medical and SCADA sys-
tems are vulnerable to malware targeting generic off-the-
shelf systems and to more-specific targeted malware akin
to Stuxnet [4, 9].

WattsUpDoc does not address targeted threats by de-
termined, well-funded adversaries. Such an adversary
with detailed knowledge of the defense mechanisms can

design an attack specifically to thwart or evade them.
Fortunately, these adversaries appear to be rare; we know
of no targeted attacks against medical devices in the wild,
and only a few examples of targeted SCADA malware
have been publicly acknowledged.

Garden-variety malware, on the other hand, is a clear
and present danger to both medical and SCADA sys-
tems [19, 25]. We contacted two security professionals
at academic medical centers to solicit first-hand perspec-
tives on the types of threats they encounter. Both sources
agreed that they have not seen any evidence of targeted
attacks against medical devices. One of the two enumer-
ated the top threats in his recent experience, listing three
widespread pieces of malware from the past year and
the Conficker worm, first identified in 2008. Based on
the available evidence, this paper focuses exclusively on
flagging, rather than directly stopping, untargeted mal-
ware threats—those that are not designed specifically to
evade power analysis.

We assume an attacker may use software exploits to
gain administrator-level access. For devices that are not
network-connected, it is important to note that they are
potentially exposed to malware if any node they interact
with can accept outside inputs from, e.g., the Internet or
a USB memory stick. We also assume that devices are
initially shipped without malware, providing a window
in which to train WattsUpDoc.

3 Validating Device Behavior with Power
Analysis

Many embedded medical devices share two key proper-
ties that make them amenable to nonintrusive monitor-
ing: (1) they perform well-defined, repetitive tasks that
should exhibit little variation from run to run; and (2)
they draw power from a power outlet. The power outlet
can serve as a monitoring point for unmodified hardware.

Many embedded devices perform a small number of
repetitive functions, such as actuating an electrical re-
lay, controlling a pump, or collecting sensor readings.
Devices based on off-the-shelf OSes (such as our com-
pounder) commonly run a single application that at least
conceptually constrains the computer’s operation; it is
not uncommon for such an application to hide as much of
the OS as it can, to give the illusion of a single-purpose
computer. As a consequence, the externally visible state
space is small.

Components’ power consumption as an undesirable
side channel is well established [18, 8, 6]. How-
ever, side channels can also leak constructive informa-
tion. Many computing devices exhibit systemwide power
consumption that scales closely with their workloads.
WattsUpDoc uses systemwide power consumption, mea-
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sured at the outlet, as a proxy for computing activity to
nonintrusively detect problems, including malware.

WattsUpDoc design goals. In light of the constraints
mentioned above, we set the following explicit design
goals for WattsUpDoc:

1. Monitor power nonintrusively—do not require de-
vice modifications, network connection, or intrude
upon their operation.

2. Meet or exceed the malware-detection rate of
software-based antivirus products.

To meet the first goal, WattsUpDoc operates exclu-
sively outside the device being monitored, and takes
read-only power measurements of which the device is
unaware. Section 4 discusses how WattsUpDoc meets
the second goal.

A general-purpose computer is complicated in the
sense that it has a tremendous number of possible states.
We assume that fully inferring the internal state of a com-
puter by inspecting its power consumption is impractical
in the general case. However, medical devices are typ-
ically dedicated to a single application per machine, ef-
fectively constraining the state space to the application’s.

Thanks to this simplification of the state space, we
can characterize normal behavior for the medical and
industrial-control devices we examine in this work.

• A compounder stores chemical recipes (possibly on
network shares), mixes chemicals, and verifies the
output. It also supports “flushing” to clear its fluid
channels of trace chemicals.
• A substation computer periodically collects infor-

mation from PLCs via wired interfaces, and period-
ically reports information to higher-level systems.

Activities other than these may appear in traces of the
whole system’s power consumption, in which case a
classifier can flag them as unusual.

While these state descriptions may seem simplistic,
the devices we consider have narrow intended purposes.
In the case of the compounder, a single custom applica-
tion opens full-screen at system launch and is intended
to be the only user interface to the device. Outside of
variations in the mixed chemicals, there are few user in-
teractions that should affect power consumption.

For a concrete example of normal versus abnormal be-
havior, Figure 2 depicts several power traces of a sub-
station running Windows XP Embedded. At idle, (Fig-
ure 2(a)), the system’s power consumption is constant
(modulo some noise). However, after contracting the
widespread “Ramnit” virus that attempts to join a bot-
net (Figure 2(b)), its power consumption at idle period-
ically exceeds the normal range. Under the control of
an emulated piece of malware, the power consumption

at idle exhibits more-pronounced periodic behavior (Fig-
ure 2(c)).

3.1 Recognizing Deviations
Antivirus scanners identify malware using signature
matching to identify unknown code specimens, requir-
ing an exact (rather than heuristic) match to known mal-
ware for a specimen to be flagged as suspicious. The
major limitation to this approach is the need to create
and distribute signatures for each piece of malware be-
fore it becomes widespread. Furthermore, recent work
has demonstrated that signature-based antivirus scanners
are easily fooled by simple mutations to known mal-
ware [15], resulting in false negatives. In the settings
we consider, excessive false negatives may have dam-
aging repercussions. For this reason, and also because
signature databases require frequent updates from online
sources, we seek alternatives to the naı̈ve signature-based
approach.

The next section describes a behavior-based approach
that offers better detection rates than commercial an-
tivirus software and does not require the device owner
to periodically update a blacklist.

3.2 Classification with Supervised
Learning

WattsUpDoc monitors systemwide power consumption
at run time. To identify anomalous activity, WattsUpDoc
uses a supervised-learning approach that requires traces
of normal and abnormal activity. While WattsUpDoc
does require some examples of abnormal activity, our ex-
periments in Section 4.2 show that it is not necessary to
completely characterize the types of abnormal activity
that may occur in the future.

AC power traces are not amenable to straightforward
time-series classification. The constant 60 Hz oscilla-
tions in the source signal and noise introduced by the
power supply make phase alignment a difficult task, thus
invalidating many simple distance metrics. For these rea-
sons, WattsUpDoc uses a supervised-learning approach
to AC power classification that takes both negative (nor-
mal) and positive (abnormal) training examples.

Choice of classifiers. Using implementations from the
Weka toolkit [13] and libsvm [5], we tested a variety of
supervised-learning algorithms for AC trace classifica-
tion. WattsUpDoc uses the three classifiers that worked
best in our experiments; 3-nearest neighbors (3-NN),
multilayer perceptron, and random forest.

All three act as binary classifiers that separate normal
behavior from abnormal behavior. WattsUpDoc splits
each power trace into 5-second chunks to simulate real-
time sampling, then applies stratified 10-fold cross val-
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(a) Idle (b) Idle after infection with “Ramnit”
malware

(c) Idle after infection with custom
malware that captures a screenshot

every 5 seconds

Figure 2: AC power traces collected on a substation running Windows XP Embedded in a SCADA testbed.

idation for training and testing. Stratification ensures
that each fold in the cross validation process contains ap-
proximately the same number of normal and abnormal
samples, which is important for repeatable results on bi-
ased datasets such as those presented in this paper. In the
case of a medical device or other system using general-
purpose hardware and software, we focus on malware as
the most interesting type of abnormal behavior.

Feature selection and training. After manually ex-
amining AC power traces with statistical tools, we se-
lected a set of time-domain features meant to reflect the
types of variation that can occur in an AC signal. While
performing routine tasks, we expect the distribution of
a power trace and the mean power consumed to remain
relatively constant over short time periods. Any unex-
pected software workloads will place extra strain on the
hardware, which will in turn consume additional power
and affect feature values. WattsUpDoc considers eight
time-domain features:

• mean, variance, skewness, kurtosis: the 1st, 2nd,
3rd, and 4th moments of the data.
• Root mean square (RMS): the square root of the

mean squared amplitude;
• The global minimum and maximum values from all

samples in a trace;
• Interquartile range (IQR): the difference between

the 75th- and 25th-percentile values in the trace; and

WattsUpDoc also uses frequency-domain features. It
transforms AC power traces into the frequency domain
using the Fourier transform, producing divisions 250Hz
wide. It uses the energy in the ten lowest divisions as fea-
tures representing periodic content up to 2.5kHz. Fea-
ture f1 represents the energy observed in the interval
between 0 and 250 Hz, f2 covers the interval between
250 Hz and 500 Hz, and so on up to f10. Our initial ex-
periments indicated that adding more frequency-domain
features did not significantly increase the accuracy of the
classifiers. It did, however, increase training time which
scales with the number of features.

4 Evaluation

WattsUpDoc’s successful operation depends on its abil-
ity to distinguish between normal and abnormal activity
after training on power traces of a computer. This sec-
tion describes our experiments on a pharmaceutical com-
pounder and a SCADA substation computer. Our results
can be summarized as follows:

• On each of two general-purpose computers dedi-
cated to a specific set of tasks, WattsUpDoc iden-
tifies anomalous activity, including malware, with
greater than 94% accuracy (94% on a compounder
and 99% on a substation computer).
• WattsUpDoc can be used for soft real-time classifi-

cation. The supervised-learning approach can op-
erate with a 5-second lag because it processes 5-
second chunks and can extract and classify feature
vectors in less than 5 seconds at run time.

WattsUpDoc uses binary classifiers that label samples
as normal (“negative”) or abnormal (“positive”). The fol-
lowing standard performance metrics apply:

Accuracy, tp+ tn/ # samples, is the fraction of correctly
labeled samples.

Precision, tp/(tp+ fp), is the fraction of positively la-
beled samples whose labels are correct. It measures
the classifier’s resistance to false positives.

Recall, tp/(tp + fn), is the fraction of samples that
should have been positively labeled that are cor-
rectly positively labeled. It measures the classifier’s
resistance to false negatives.

In the above definitions, tp and tn refer to true positives
and true negatives, and fp and fn refer to false positives
and false negatives. A classifier’s precision and recall re-
sults provide insight into the types of errors the classifier
tends to make, rather than counting only the number of
misclassified samples.
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4.1 Experimental Setup

The goals of our equipment design are simplicity, low
cost, and modularity (so that devices being monitored
need not be modified).

Our previous work on power monitoring [6, 7] de-
scribed our tracing setup, summarized here. To instru-
ment a standard North American power outlet, we placed
a 0.1Ω sense resistor (1% tolerance) in series with its
neutral terminal. After plugging the device under test
into this outlet, we used an Agilent U2356A data acqui-
sition unit (DAQ) to sample the voltage drop across the
resistor at a rate of 250 kHz and save the trace to a file.
Because we use the DAQ only as a recording device, and
the size and cost of the instrumentation is low, we envi-
sion a future version of this system that is encapsulated
in either an outlet cover or a small power brick with a
pass-through outlet.

Compounder. To evaluate our technique on real med-
ical equipment, we purchased a Baxa ExactaMix 2400
compounder via a public auction website. The model
we tested runs the manufacturer’s compounder software
under Windows XP Embedded 2002 Service Pack 2. Ac-
cording to the BIOS boot screen, the compounder has a
664 MHz VIA C5 x86 CPU and 496 MB of RAM.

We gathered AC power traces of the compounder run-
ning a wide variety of workloads, including booting,
shutting down, flushing, compounding 3 mixtures, in-
fected with our emulated malware, and infected with
real-world malware samples. We also gathered traces of
the compounder idling, i.e., powered on with the com-
pounder software on screen, but no compounding task
running. These traces establish a baseline activity level.

Substation computer. We tested a Schweitzer
SEL3354 substation computer [22], both at idle and un-
der a variety of real and simulated malicious workloads.
The SEL3354 we tested (circa 2003), was powered via
a standard AC outlet, and included an AMD Athlon 64
2600+ processor, 2GB of RAM, and a Compact Flash
card for primary storage in a rack-mountable enclosure.
It ran the manufacturer’s substation software under Win-
dows XP Embedded. The only hardware difference from
an off-the-shelf computer is the addition of 16 RS-232
serial ports intended for use with devices such as PLCs.

We gathered AC power traces of the substation com-
puter that represent most of its typical range of activ-
ity, including idling (powered on, Windows desktop on
screen, no user interaction once booted), rebooting, in-
fected with our emulated malware, and infected with
real-world malware samples.

Malware selection. This paper considers untargeted
malware in clinical and industrial environments. Untar-
geted malware finds its way onto off-the-shelf systems

via familiar vectors such as infected USB drives and net-
work vulnerabilities.

To test whether our classifiers could detect devia-
tions caused by untargeted malware on the compounder
and substation computer, we manually installed twelve
of the most-prevalent malware programs of 2011 and
2012 [23, 21], starting with the most prevalent and select-
ing alternatives when necessary based on sample avail-
ability or unsuccessful infection. We could not install
antivirus software on the substation computer or com-
pounder because their versions of Windows XP Embed-
ded did not include the necessary framework or installer
support. Without a definitive detection mechanism, we
considered a malware install “successful” if the mali-
cious executable launched without any user-visible error.

Each trial began with a “clean” snapshot of the origi-
nal system. While it is difficult to generalize about com-
mon malware, those with the greatest prevalence are a
reasonable starting point. We also exposed the com-
pounder to the top four most-prevalent malwares iden-
tified by one of the healthcare security professionals we
consulted. Three out of four failed to infect the com-
pounder’s “embedded” variant of Windows, presumably
because of assumptions encoded in the malware, but one
infection occurred. We chose not to alter any software on
the compounder to make it vulnerable to specific threats,
to avoid inadvertently changing other properties.

To test detection of common malware archetypes, we
also wrote emulated malware designed to mimic routine
misbehavior. Specifically, we implemented a keylogger,
a pop-up dialog launcher that opens dialog boxes (to em-
ulate adware), and a screen grabber that saves screen-
shots at a fixed interval (to emulate common exfiltration
techniques).

4.2 Experimental Results

WattsUpDoc identifies known malware—malware it was
trained to recognize—with 94% accuracy on the com-
pounder and 99% accuracy on the substation com-
puter. Additionally, WattsUpDoc identifies unknown
malware—unlabeled samples of a malware infection that
were not in the training set—with 88.5% accuracy on the
compounder and 84.9% accuracy on the substation com-
puter, which is comparable to the 86% detection rate of
a state-of-the-art behavior-based malware detector [11].

4.2.1 Pharmaceutical Compounder

We gathered traces of the ExactaMix compounder while
performing a variety of real-world tasks, booting and
shutting down, and while running a wide variety of emu-
lated and authentic malware workloads. We were able
to profile the compounder while it performed special-
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Classifier Accuracy Precision Recall

Compounder

3-NN 93.6% 89% 78%
Perceptron 94.4% 99% 73%
Random Forests 94.2% 93% 77%

Substation

3-NN 99.5% 100% 100%
Perceptron 99.5% 100% 100%
Random Forests 99.5% 100% 100%

Table 2: WattsUpDoc distinguishes among our test work-
loads: accuracy, precision, and recall for our AC devices
when we trained WattsUpDoc on samples of all of our
test workloads.

ized actions including mixing ingredients according to
programmed recipes and flushing the fluid inlets. The
classification task was to separate normal behavior (de-
fined as idle, booting, shutdown, or compounding tasks)
from the malware workloads. We used stratified 10-fold
cross validation, which enforces approximately the same
positive/negative composition in the training and test-
ing sets to avoid biases. There were 2343 total samples
tested, 1845 positive (infected) samples and 497 nega-
tive samples. We used many more positive samples than
negative samples because gathering negative samples re-
quired manual interaction with the compounder and fre-
quent solution refills. In a clinical deployment, regular
use would provide a ready source of negative samples.
All three of the classifiers achieved at least 93% accu-
racy. Table 2 summarizes the full results. This experi-
ment demonstrates that WattsUpDoc’s classifiers can re-
liably separate different workloads given training sam-
ples of all workloads expected at testing time.

We re-trained WattsUpDoc on half of the compounder
dataset after removing all samples of half of the real mal-
ware variants. We then tested WattsUpDoc using only
normal samples and those drawn from the malware vari-
ants not used at training time. That is, the malware vari-
ants used at training and testing time were randomly as-
signed disjoint sets. We partitioned, trained, and tested
ten times to avoid a single biased experiment. Finally, we
implemented majority voting among WattsUpDoc’s clas-
sifiers to produce a single label for each sample. This ex-
periment presents a more realistic deployment scenario,
one in which WattsUpDoc has access to some malware
samples at training time but has not been trained on all
of the malicious workloads seen at testing time. Table 3
summarizes the results, which show that the accuracy
decreases by approximately 5%, but is still comparable

Device Accuracy Precision Recall

Compounder 88.5% 93.5% 92.1%
Substation comp. 84.9% 98.3% 80.8%

Table 3: Mean accuracy, precision, and recall over 10
runs for each dataset with malware samples randomly
partitioned into two disjoint sets. One set was used for
training and the other for testing.

to the state-of-the-art in behavior-based malware detec-
tion. The precision is greater than 93%, meaning that
WattsUpDoc produced few false positives, which could
lead to unnecessary downtime in a clinical setting.

Feature ranking. To evaluate which features best
separate samples from each class, we used Weka’s
information-gain attribute evaluator to rank the fea-
tures by their contribution to classification (measured
as mutual information between each feature and the
class label). Mutual information is the difference be-
tween the entropy of the feature and the entropy of
the feature conditioned on the class label, expressed as:
I(feature;class) = H(feature)−H(feature|class) where
H is the entropy and I the mutual information. This rank-
ing is feature set dependent, but not classifier dependent.

For this dataset, we found that the top five features in
order were mean, RMS, skewness, variance, and max-
imum. None of the frequency-domain features appear
in the list of top features. Rather, all of the most valu-
able features for this dataset pertain to the average power
draw and slow-moving changes in that power draw. The
dynamic range of the mixing and flushing traces suggest
that the compounder’s pump is responsible for the rela-
tive utility of these features. When the pump switches
on, the compounder’s total power consumption increases
by more than 30%.

4.2.2 Substation Computer

We gathered samples of the SEL3354 substation com-
puter’s power consumption while running the Schweitzer
software but otherwise idling, rebooting, and running a
wide variety of emulated and authentic malware work-
loads. The classification task was to separate normal
behavior (defined as idle or reboot traces) from abnor-
mal behavior (the malware workloads). As for the com-
pounder dataset, we used stratified 10-fold cross valida-
tion for training and testing. There were 2634 total sam-
ples tested, 364 negative samples and 2270 positive (in-
fected) samples. All three of the classifiers performed
nearly perfectly, with 99.5% accuracy and precision and
recall both rounding to 100%.

As for the compounder, we re-trained WattsUpDoc on
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Figure 3: The effect on accuracy as the size of the win-
dow over which features are calculated increases. 5-
second windows produce the highest accuracy for all
three datasets.

the substation computer dataset ten times after randomly
partitioning the malware variants into disjoint training
and testing sets to simulate a more realistic deployment
scenario. Table 3 summarizes the results. Once again,
the accuracy decreased versus the accuracy on known
malware samples, by approximately 15% for this dataset.
The recall decreased to 80.8%, meaning that nearly 20%
of the malware samples went undetected, but the preci-
sion remained high (98.3%), which indicates that sam-
ples WattsUpDoc flagged as infected actually represent a
malware infection with high probability. A possible ex-
planation for the performance difference with unknown
malware on the substation dataset is that we gathered
traces for fewer malware variants using the substation
computer (8 versus 12), so fewer training samples were
available for this experiment.

Feature ranking. For this dataset, we found that the
top five features in order were f3 (total energy between
500 and 750 Hz), maximum, f4 (total energy between
750 and 1000 Hz), RMS, and mean. The highest-ranked
features all appear to be related to the overall power con-
sumption or frequency components. The frequency com-
ponents are indicative of rapid changes in power con-
sumption, which cause power supplies to induce differ-
ent noise patterns on the circuit. The substation com-
puter has no special-purpose hardware that exhibits slow
and obvious state changes, unlike the compounder. This
hardware disparity provides a plausible explanation for
the relative value of the frequency-domain features in the
substation computer dataset.
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Figure 4: The effect on accuracy as the number of train-
ing samples increases. The point of diminishing returns
appears to be approximately 500 for the compounder
dataset and 1000 for the substation dataset.

4.3 Maximizing Classification Accuracy

Two parameters directly affect WattsUpDoc’s classifica-
tion accuracy: the window size over which features are
computed, and the training set size.

Window size. To systematically select the size of the
window over which WattsUpDoc calculates features, we
tested six values ranging from 1 second to 60 seconds.
We tested each window size once using the full dataset
for each device. Excessively narrow windows could fail
to accurately capture longer-running operations on de-
vices like the compounder and excessively wide win-
dows could lower the effective signal strength of short-
lived operations, allowing malware to go undetected. For
both datasets, we found that 5-second windows produced
near-maximal accuracy for all three classifiers and that
the accuracy tended to decrease slowly as the window
size increased. Figure 3 summarizes the results.

Training set size. To determine how many training
samples WattsUpDoc requires to reliably separate nor-
mal from abnormal behavior, we randomly selected one
third of all samples from each dataset for testing and
trained on 10–100% of the remaining samples in 10%
increments. Each training set size was tested once per
device and the training sets contained samples of both
normal and abnormal operation. Figure 4 summarizes
the results, which show diminishing returns in accuracy
for the compounder after approximately 500 samples and
for the substation computer after 1000 samples.
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5 Related Work

Cárdenas et al. provide an overview of the challenges
endemic to SCADA systems, including the difficulty of
modifying them once they are deployed, and propose an
approach to SCADA-device anomaly detection that uses
knowledge of the system being monitored to develop
a template of normal behavior [3]. Unlike our work,
Cárdenas et al. evaluate their system in simulation and
rely on directly observing the physical devices attached
to a control system as inputs and outputs.

Similar to our approach, Cheung et al. advocate
model-based malware-detection techniques for Modbus
TCP networks and develop an IDS [28]. Beside our em-
phasis on power traces instead of network traces, we do
not make any assumptions about the protocols in use in
the systems that we seek to protect.

Khan et al. use power tracing to diagnose problems
with sensor nodes deployed in the field [16]. Our work
focuses on a wider variety of devices and must consider
adversarial scenarios in which illegitimate patterns may
hide in legitimate ones.
AC power event recognition. Previous work has ex-
plored coarse-grained energy monitoring that detects
electrical activity (such as appliances’ on–off transitions)
at a household level [14, 12]. WattsUpDoc takes a finer-
grained view of a single complex device with an empha-
sis on anomaly detection rather than energy reporting.

Our work is conceptually related to previous work an-
alyzing power traces from embedded systems. In par-
ticular, Enev et al. refined the ElectriSense concept by
studying the correlation of EMI with video signals being
played on modern high-definition televisions. HDTVs
are comparatively simple embedded systems and are
amenable to simple models, whereas many medical de-
vices are not.
Power analysis and malware. Kim et al. and Liu et al.
propose and evaluate power analysis as a malware detec-
tion mechanism for mobile phones [20, 17]. Liu et al.
present VirusMeter, which uses explicit modeling of a
small number of user actions to build a state machine
and flag later anomalous power consumption using a va-
riety of classifiers. Kim et al. apply a similar approach
that requires offline measurements of the device under
test to create a suitable model for later use. Kim et al.
build signatures for individual pieces of malware. Like
VirusMeter, their system relies on power consumption
information provided by the phone that they seek to pro-
tect. Our techniques do not require modifications to the
device under test and do not use potentially untrustwor-
thy APIs to obtain power consumption information.

This work conceptually extends our recent explo-
rations of AC power analysis that classified power sig-
natures of webpages with a frequency-domain classifier

and proposed applying power analysis to the problem of
malware detection [7, 6]. The webpage analysis focused
on general-purpose commodity computing devices [7];
we extend this approach, applying different classification
techniques and features to a new application on embed-
ded devices that exhibit smaller state spaces.

6 Discussion and Extensions

While the power-analysis techniques in this paper show
some promise for revealing malicious activity on embed-
ded or hard-to-change devices, they are not a complete
solution to the problem of malware on these devices.
This section discusses some of the issues still surround-
ing real-world deployment of WattsUpDoc and the gen-
eralizability of our technique.

Deployment Scenarios. Since our measurement mech-
anisms are low cost and nonintrusive, we envision pair-
ing embedded devices with measurement points. As
mentioned in Section 4.1, an AC measurement point
could be a simple “wall wart” form-factor brick with one
or more pass-through outlets into which devices could
be plugged, or even an in-wall outlet box that looks like
a standard outlet plate. In a networked environment,
measurement points would stream their readings to a
centralized computer for classification and logging. To
save traffic, each measurement point could use a low-
cost microcontroller to perform feature extraction, then
send only sets of feature vectors. Instrumenting only se-
lect devices, e.g., those that owners know run outdated
software or require network connections, is another pos-
sibility that would reduce the management burden while
providing increased visibility.

The best strategy for balancing false positives and
false negatives in a clinical or industrial setting is not yet
clear. It is a waste of resources for device maintainers to
follow up on false positives, but decreasing system sen-
sitivity too far runs the risk of ignoring valid alarms. By
designing WattsUpDoc primarily as an offline reporting
tool intended to gather evidence of suspicious activity,
we hope to minimize the risk of introducing complexity
without providing valuable new evidence of infections.

NIDS. Networked intrusion detection systems (NIDS)
are an important monitoring tool for many sites. Unfortu-
nately, most NIDS’ detection strategies depend on a cer-
tain minimum level of visibility into the systems being
monitored, such as access to log entries or the filesystem.
As described in the introduction, some vendors prohibit
any modifications at all to their systems—leaving NIDS
unable to monitor their behavior. We intend WattsUpDoc
to be complementary with NIDS; in fact, it could feed its
detection results into NIDS monitoring to provide visi-
bility into systems that otherwise would be unmonitored.
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Generalizability. The systems we evaluated run “em-
bedded” versions of the Windows operating system. The
key difference versus consumer-grade workstations is
that the medical and SCADA systems are designed for
specific applications that constrain the computer’s state
space—and consequently also constrain its power con-
sumption. In contrast, off-the-shelf PCs lack software or
policy restrictions to prevent them from running many
tasks simultaneously or executing new code. Without a
consistent base set of known-good behaviors on a PC,
WattsUpDoc would likely raise false alarms because of
an inconsistent or inaccurate internal model.

Although it may not generalize to commodity PCs,
WattsUpDoc would likely work well on other embedded
devices that rely on firmwares instead of true operating
systems. With little or no concurrency, and with state
spaces that resemble finite state machines, many embed-
ded devices are comparatively simple to characterize.

7 Conclusion

Safety-critical medical devices need better protection
against conventional malware. Protecting these sys-
tems without modifying their strictly validated em-
bedded software is a key challenge. WattsUpDoc
is the first behavior-monitoring system for embed-
ded devices that monitors systemwide power consump-
tion. Designed to detect aberrant behavior on de-
vices that exhibit constrained state spaces, WattsUpDoc
uses machine learning to model permissible behavior
and detect deviations. WattsUpDoc requires no hard-
ware or software modifications to the devices it moni-
tors. We tested WattsUpDoc on a pharmaceutical com-
pounder and a similar industrial-control (SCADA) sys-
tem. When we infect these systems with common mal-
ware, WattsUpDoc flags the anomalous behavior with
accuracy of 94% and 99.5% on the compounder and
substation computer respectively. Against malware it
was not trained to recognize, WattsUpDoc’s accuracy de-
grades to 88.5% and 84.9% for the compounder and sub-
station computer respectively—still comparable to state-
of-the-art behavior-based malware detection. The in-
tuition behind the high accuracy, precision, and recall
is that embedded medical systems are designed to do
one thing well and repeatedly—unlike general-purpose
computers. Malware causes subtle changes to power
consumption that machine learning techniques can then
identify.
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