
Position Based Dynamics

Zhipeng Ding

Department of Computer Science
University of North Carolina at Chapel Hill

COMP768, Dec. 2, 2016

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 1 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 2 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 3 / 36



Introduction

Force Based Methods

Internal and external forces are accumulated, Newton’s second law
Employ a time integration method, update velocities and finally
positions

Impulse Based Methods

Directly manipulate velocities, one layer of integration can be skipped

Position Based Methods

Omit the velocity layer as well and immediately works on the positions
Define general constraints via a constraint function
Directly solve for the equilibrium configuration and project positions

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 4 / 36



Introduction (Continue)

Main Usage

Computer games: it is often desirable to have direct control over
positions of objects or vertices of a mesh

Main features and advantages

Position based simulation gives control over explicit integration and
removes the typical instability problems
Positions of vertices and parts of objects can directly be manipulated
during the simulation
The formulation allows the handling of general constraints in the
position based setting
The explicit position based solver is easy to understand and implement

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 5 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 6 / 36



Algorithm

Main idea: instead of forces - constraints; instead of integration -
constraint projection

The dynamic object is represented by a set of N vertices and M
constraints.

A vertex i ∈ [1, ...,N] has a mass mi, a position xi and a velocity vi
A constraint j ∈ [1, ...,M] consists of

a cardinality nj
a function Cj : R3nj → R
a set of indices {i, ..., inj

}, ik ∈ [1, ...,N]
a stiffness parameter kj ∈ [0, 1] and
a type of either equality or inequality

Constraint j with type equality is satisfied if Cj(xi , ..., xinj
) = 0. If

its type is inequality then it is satisfied if Cj(xi , ..., xinj
) ≥ 0.

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 7 / 36



Algorithm (Continue)

1 for all vertices i
2 initialize xi = x0i , vi = v0i , wi = 1/mi

3 end for
4 loop
5 for all vertices i do vi ← vi + ∆twifext(xi)
6 for all vertices i do pi ← xi + ∆tvi
7 for all vertices i do generateCollisionConstraints (xi → pi)
8 loop solverIteration times
9 projectConstraints(C1, ...,CM+MColl

,p1, ...,pN)
10 end loop
11 for all vertices i do
12 vi ← (pi − xi)/∆t
13 xi ← pi
14 end for
15 velocityUpdate(v1, ..., vN)
16 end loop

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 8 / 36



Algorithm (Continue)

Damping

The quality of dynamic simulations can generally be improved by the
incorporation of an appropriate damping scheme.
Generally, a damping term CẊ can be incorporated into the motion
equation of an object where Ẋ denotes the vector of all first time
derivatives of positions
In order to preserve linear and angular momentum of deformable
objects, symmetric damping forces, usually referred to as spring
damping forces, can be used

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 9 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 10 / 36



Solver

Unified Solver: Everything is a set of particles connected by
constraints

Simplify collision detection; two-way interaction of all objects type;
fits well on the GPU

Figure: Particles [Macklin]

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 11 / 36



Solver (Continue)

The goal of step (8)-(10) in previous algorithm is to correct the
predicted positions of the particles such that they satisfy all
constraints

The problem that needs to be solved comprises of a set of M
equations for 3N unknown position components

M ≥ 3N: over-determined, M ≤ 3N: under-determined
The equations in general are non-linear
Collisions produce inequalities rather than equalities

Solve a non-symmetric, non-linear system with equalities and
inequalities is a TOUGH problem

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 12 / 36



Solver (Continue)

Let x be the concatenation [xT1 , ..., x
T
N ]

Let all the constratint function Cj take the concatenated vector x as
input while only using the subset of coordinates they are define for

The system to be solved is

C(x) � 0

...

CM (x) � 0

where the symbol � denotes either = or ≥

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 13 / 36



Solver (Continue)

Each constraint function is then linearized in the neighborhood of the
current solution using

C (x + ∆x) = C (x) +∇C (x) ·∆x + O(|∆x|2) = 0

This yields a linear system for the global correction vector ∆x

∇C1(x) ·∆x = −C1(x)

...

∇CM(x) ·∆x = −CM(x)

Then use a non-linear Gauss-Seidel-type iteration and solve each
constraint equation seperately

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 14 / 36



Solver (Continue)

The problem of the system being under-determined is solved by
restricting ∆x to be in the direction of ∇C which is also a
requirement for linear and angular momentum conservation

This means choosing a scalar λ such that

∆x = λ∇C (x)

Hence the formula for ∆x

∆x = − C (x)

|∇C (x)|2
∇C (x)

If the points have individual masses, then weight the corrections ∆x
by the inverse masses wi = 1/mi. In this case a point with infinite
mass, i.e. wi = 0, does not move as expected

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 15 / 36



Solver (Continue)

Thus, the correction vector of a single particle i is

∆xi = −λwi∇xiC (x)

where

λ =
C (x)∑

j wj |∇xjC (x)|2

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 16 / 36



Solver (Continue)

To deal with stiffness k, the simplest way is to multiply the
corrections ∆x by k

However, for multiple iteration loops of the solver, the effect of k is
non-linear. The remaining error for a single distance constraint after
ns solver iterations is ∆x(1− k)ns

To get a linear relationship, multiply the corrections not by k directly
but by k′ = 1− (1− k)1/ns

With this transformation the error becomes ∆x(1− k′)ns = ∆x(1− k)
and thus becomes linearly dependent on k and independent of ns

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 17 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 18 / 36



Constraints

Constraint types

Distance (clothing)
Shape (rigid bodies, plastics)
Density (fluids)
Volume (inflatables)
Contact (non-penetration)

Combine contraints

Melting, phase-changes
Stiff cloth, bent metal

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 19 / 36



Example: Cloth Simulation

For simplicity, define xi ,j = xi − xj

Streching

Figure: Streching [Bender 15]

Distance constraint function C (x1, x2) = |x1,2| − d

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 20 / 36



Example: Cloth Simulation

The derivatives with respect to the points are

∇x1C (x1, x2) = n & ∇x2C (x1, x2) = −n

where n =
x1,2
|x1,2|

The scaling factor λ is, thus,

λ =
|x1,2| − d
ω1 + ω2

and the final corrections

∆x1 = − ω1

ω1 + ω2
(|x1,2| − d)n

∆x2 = +
ω2

ω1 + ω2
(|x1,2| − d)n

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 21 / 36



Example: Cloth Simulation (Continue)

Bending

Figure: Bending [Bender 15]

Bilateral bending constraint function
Cbend(x1, x2, x3, x4) = arccos(

x2,1×x3,1
|x2,1×x3,1| ·

x2,1×x4,1
|x2,1×x4,1|)− ϕ0

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 22 / 36



Example: Cloth Simulation (Continue)

Self Collision

Figure: Collision [Bender 15]

Constraint function C (q, x1, x2, x3) = (q− x1) · x2,1×x3,1
|x2,1×x3,1| − h

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 23 / 36



Example: Cloth Simulation (Continue)

Pressure

Figure: Simulation of overpressure inside a character [Muller 06]

Constraint function

C (x1, ..., xN) = (

ntriangles∑
i=1

(xt i1
× xt i2

) · xt i3)− kpressureV0

Here t i1, t i2 and t i3 are the three indices of the vertices belonging to
triangles i

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 24 / 36



Example: Cloth Simulation (Continue)

Video Position Based Dynamics

There are also other interesting examples that have more constraints
to explore, but the PBD framework is the same. So, we stop here to
discuss other issues

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 25 / 36

https://www.youtube.com/watch?v=j5igW5-h4ZM


Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 26 / 36



Implementation

In a single CPU implementation, the solver processes the constraints
one by one in a Gauss-Seidel-type fashion

However, GPU based parallelization is more preferable

Graph-Coloring Methods
Jacobi Methods
Hybrid Methods

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 27 / 36



Implementation (Continue)

Graph-Coloring Methods

Need to spilt the constraints into groups or phases. In each phase,
none of the constraints are allowed to share a common particle
In general case, splitting constraints into phases corresponds to the
graph coloring problem, where each constraint corresponds to a node
of the graph and two constraints are connected by an edge if they
affect one or more common particles
The minimum number of colors determines how many phases are
needed in the parallel execution of PBD.
Keeping the number of phases small is not the only optimization
criterion. The set also need to have similar size for good load balancing

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 28 / 36



Implementation (Continue)

Jacobi Methods

In a Jacobi solver, each constraint may be processed in parallel, and
the position delta for each particle obtained by summing the delta from
each constraint at the end of an iteration. But, converge significantly
slower and may not converge at all
Constraint averaging:

∆x̃i =
1

ni

∑
∆xi

Introduce a global user-parameter ω to control the rate of successive
over-relaxation (SOR)

∆x̃i =
ω

ni

∑
∆xi

recommand using 1 ≤ ω ≤ 2

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 29 / 36



Implementation (Continue)

Hybrid Methods

To take advantage of both Gauss-Seidel and Jacobi solvers,
Fratarcangeli et al. proposed a hybrid approach
Use graph coloring and modify the graph such that it produces a
desired number of k colors by splitting high valence particles, i.e.
solving them Jacobi style

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 30 / 36



Outline

1 Introduction

2 Algorithm

3 Solver

4 Specific Constraints

5 Implementation

6 Limitations

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 31 / 36



Limitations

The dependency of the results on the amount of solver iterations

Figure: The free-flowing particles fall onto each other, three different times
[Bartels 15]

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 32 / 36



Limitations (Continue)

One-frame delay in collision detection due to the collision detection
happening in between the external forces and the constraint solve

Figure: Two particles, situated above each other but not touching, fall onto
a floor [Bartels 15]

Figure: The one-frame delay pushes particle B back and forth between A
and C [Bartels 15]

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 33 / 36



Limitations (Continue)

A problem inherent to the Jacobi iterations is the constraint
averaging. However, as explained by Macklin et al. (2014), it is
almost impossible to efficiently parallelize the Gauss-Seidel version of
PBD

Figure: Constraint averaging makes the amount of necessary solver iterations
depend on the amount of constraints [Bartels 15]

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 34 / 36



For Further Reading I

Mller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. (2007).
Position based dynamics. Journal of Visual Communication and Image
Representation, 18(2), 109-118. Chicago

Mller, M. (2008). Hierarchical position based dynamics.

Bender, J., Mller, M., Otaduy, M. A., and Teschner, M. (2013).
Position-based methods for the simulation of solid objects in computer
graphics. Eurographics.

Macklin, M., and Mller, M. (2013). Position based fluids. ACM
Transactions on Graphics (TOG), 32(4), 104.

Bender, J., Mller, M., Otaduy, M. A., Teschner, M., and Macklin, M.
(2014, September). A Survey on Position?Based Simulation Methods
in Computer Graphics. In Computer graphics forum (Vol. 33, No. 6,
pp. 228-251).

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 35 / 36



For Further Reading II

Bender, J., Muller, M., and Macklin, M. (2015). Position-based
simulation methods in computer graphics. EUROGRAPHICS Tutorial
Notes.

Bartels, P. (2015). Position Based Dynamics.

Zhipeng Ding (UNC) Position Based Dynamics COMP768, Dec. 2, 2016 36 / 36


	Introduction
	Algorithm
	Solver
	Specific Constraints
	Implementation
	Limitations
	Appendix

