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Overview

I Defining Chromatin
I Models for Chromatin Ordered by Increasing Complexity

I Discrete Chain
I Worm-like Chain
I Beads on a Wire

I Forces applied to models
I Solvers for Simulation

I Metropolis-Monte-Carlo
I Brownian Dynamics
I Langevin Equation
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Chromatin - Definition [1]

I Resides in eukaryotic cells (cells with complex structures
contained in membranes)

I Consists of DNA, histone, and other proteins that comprise
chromosomes.

I In chromatin, DNA wraps around histone proteins to form
nucleosomes.
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Chromatin - Function and Structure [4]

I Packages DNA into a small, storable volume within a cell

I The inside of the chromatin fiber and packing of the
nucleosomes remains a mystery

I Many hypothetical models attempt to mimic the behavior of
chromatin in order to gain insight into its structure
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Chromatin - Molecular Structure

Figure: Chromatin can change in diameter due to stretching and coiling.
Above are several different orientations (left) of the same chromatin
strand at different times (right) [4]
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Chromatin - Molecular Structure

Figure: Example of Chromatin fully unwound [4]
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Why Model?

I DNA modeling and simulation is important because it helps
us understand the cell behavior and the biological and
chemical interactions within cells.

I Because DNA consists of different forms in different phases of
a cells life and its actual form can not be measured accurately
using current technology, we need to use models to
approximate its behavior.
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Why Model?

I The complexity of the models we use depends on the
biological questions we are trying to solve.

I There is a trade-off between the level of detail we can include
in the simulation and the scale of the simulation.

I At higher levels, polymer models of DNA approximate the
geometrical structure of the entire DNA within the nucleus
and the interaction between DNA strands.

I At lower levels, molecular models of DNA more accurately
describe the interactions between the proteins and DNA
strands.
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Overview - Models

I Discrete Chain - Chromatin under low forces

I Worm-like Chain - Chromatin under high forces

I Beads on a Wire - Incorporates forces from Nucleosomes
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Chromatin - Polymer Models

I DNA may be approximated by a flexible elastic chain. An
approximate description for such a molecule is constructed by
defining suitable segments, which behave like rigid cylinders
on the time and length scale considered.

Two types of elastic chain:

I Worm-like Chain

I Freely-jointed Chain
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Chromatin - Polymer Models

I The vector si defines the direction and length of segment i , fi
is a unit vector normal to the segment and gi is an auxiliary
vector that is used to take into account permanent bending of
the DNA. [7]
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Chromatin - Polymer Models

I A segmented chain can be described with the following
parameters:

I Bending rigidity
I Torsional rigidity
I Stretching rigidity
I The interaction potential between chain segments
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Freely-jointed Chain

I DNA under low external forces can be modeled using the
freely-jointed chain.

I Freely-jointed chain: no correlation between the orientation of
a segment with the orientation of its neighboring segments

I Chain adopts a random-walk behavior. [5]

I In the low force limit the model acts as a Hookean Spring

I In the high force limit the model reaches full extensibility.
This is not the behavior of DNA under high external forces as
individual links are extensible. [10]
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Freely-jointed Chain

Figure: http://biocurious.com/2006/07/04/wormlike-chains
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Worm-like Chain

I The worm-like chain (WLC) equation is commonly used to
describe the mode of motion of polymers like DNA [8]

I Basic concept: Amount of force per length exerted by a
polymer is proportional to the extension of the polymer
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Worm-like Chain

Figure: http://cms.mse.berkeley.edu/research/hierarchical.htm
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Persistence Length

Persistence length of a material

I When dividing a chain into segments, the length of the
segments matter.

I Segments shorter than persistence length behave
approximately like a rigid rod while segments longer than
persistence length shows significant internal flexibility. [7]

I The distance over which the correlation of the direction of the
two ends of a polymer is lost. [5]

I Describes a filaments resistance to thermal force
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Worm-like Chain

Force Exerted by Polymer

F =
(
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T
Lp
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)−2
− 1

4 + x
Lc

]
I F : Force per length exerted by polymer

I x : Extension of polymer

I Lp: Persistence length

I Lc : Contour length - total length of polymer

I kB : Boltzmann’s constant

I T : Temperature
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Beads on a Chain - Structure [6]

Definition

I Discrete model used in polymer dynamics

I Can model linear strands of chromatin like wormlike chain,
but now allows for the inclusion of nucleosomes

I Each nucleosome is represented as a bead on the Chromatin
chain

Structure

I N beads of radius a and mass m linked by N − 1 virtual bonds

I Each bead is linked by an equilibrium “bond length”, l0
I l0 varies according to the salt concentration of the solution
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Beads on a Chain - Higher Detail [6]
Details

I Can add forces directly to beads to describe the movement of
the chain

I Can also apply forces directly to the chain

I Simulations may inspect local structures such as
dinucleosomes (left) and trinucleosomes (right) [4]

Modeling Chromatin University of North Carolina, Chapel Hill



Beads on a Chain - Model Diagram

Figure: Depicts nucleosomes (beads) and distributed electrostatic charges
(dots on beads) [2]
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Overview - Particle Forces

Energy Potentials

I Stretching

I Bending

I Torsional

Forces

I Electrostatic

I Microinic

I Internucleosomal
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Young’s Modulus [9]

I Stress: ratio of force acting normally to a surface over the
area of the surface

σavg = Fn
A ≈ σ

I Strain: Dimensionless ratio of change in length over original
length

ε = L−l
l = ∆l

l
I Young’s Modulus: Normal stress divided by linear strain.

I Stress/Strain
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Persistence Length

Persistence length of a material

I When dividing a chain into segments, the length of the
segments matter.

I Segments shorter than persistence length behave
approximately like a rigid rod while segments longer than
persistence length shows significant internal flexibility. [7]

I The distance over which the correlation of the direction of the
two ends of a polymer is lost. [5]

I Describes a filaments resistance to thermal force
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Persistence Length

Equation

Lp = EI
kBT

E : Young’s modulus

I : Moment of inertia of plane area

kB : Boltzmann constant

T : room temperature (Kelvin)

kBT : the relevant energy scale for all molecular interactions
inside a cell
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Persistence Length

I The correlation length of the direction of the chain measured
along its contour [7]〈

~u(s)~u(s + s ′) = e−s/Lp

〉
I Here u(s) is a unit vector in the direction of the chain. s is

the position along the chain contour, the angular brackets
indicating the average over all positions and chain
conformations.
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Figures - Stress and Strain

Modeling Chromatin University of North Carolina, Chapel Hill



Bending Rigidity

Bending elasticity

I The energy required to bend a polymer segment of unit
length over an angle of 1 radian [7]

I Energy required to bend two segments of length l by an angle
θ with respect to one another:

Eb =
kBT

2

Lp

l
θ2
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Torsional Rigidity

Torsional Rigidity

I the energy required to twist a polymer segment of unit length
over an angle of 1 radian [7]

I Energy required to twist two segments of length l by an angle
φ with respect to one another:

ET =
kBT

2

LT

l
φ2
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Stretching Rigidity

Stretching Elasticity

I The energy required to stretch a polymer segment of unit
length

I Energy required to stretch a segment of the chain of length l :

Estr =
1

2

σ

l
∆l2

where σ = F ∗ L
∆L [7]
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Intra-chain Interactions

I Intra-chain interactions can be described using the
electrostatic potential.

I At low ionic concentrations: Debye-Huckel equation can be
used to calculate the elecotrostatic potential between two
uniformly charged non-adjacent segments [7]

I Debye-Huckel is a linearized version of Poisson-Boltzmann
(explained later).
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Intra-chain Interactions

Equation

E
(e)
ij = v2

D

∫ ∫
dλidλj

e
−κrij

rij

I λi , λj : distances from the segment beginnings

I rij : distance between the current positions at the segments to
which the integration parameters

I κ: the inverse of the Debye length (κ2 = 8πe2

kbTD )

I I : ionic strength

I e: proton charge

I D: dielectric constant of water

I v : linear charge density
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Overview - Solvers

I Metropolis-Monte-Carlo

I Brownian Dynamics

I Langevin Equation
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Metropolis-Monte-Carlo Simulation

Basic Idea

I Probability of a particular configuration within a set of N
configurations can be estimated using a probability
distribution function as N approaches infinity

lim
N→∞

Nε

N
= P(ξ)
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Metropolis-Monte-Carlo Simulation

Algorithm [3]

1. Pick a configuration

2. Pick a trial configuration

3. Compute the probability ratio R:
P(trialconfiguration)/P(configuration)

4. Pick a random number p with value between 0 and 1.

5. If p ≤ R, make the next configuration = trial configuration

6. If p > R, next configuration = current configuration

7. Repeat step 2-6 for N times. N has to be a sufficiently large
number.
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Metropolis-Monte-Carlo Simulation

Using Monte-Carlo to simulate configuration of DNA [12]
I Local configuration:

I Segment A is randomly selected, and the random displacement
is applied.

I Random vector: Probability distribution of direction is uniform
across 3 dimensional space. Length is in the range of 0 and
upper bound determined by acceptance ratio.
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Metropolis-Monte-Carlo Simulation

I Global configuration:
I After a random segment is selected, the rotation of the arc

including the segment and its neighbors is picked randomly.
I Probability distribution of rotation axis direction is uniform

across 3 dimensional space.
I Angle of rotation is in the range of 0 and upper bound

determined by acceptance ratio.

I Acceptance ratio:
I If total potential energy of trial configuration is lower than the

previous configuration, the trial configuration is accepted.
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Metropolis-Monte-Carlo Simulation [6]
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Brownian Dynamics Algorithm

I First order algorithm by Ermack and McCammon [6].
Generates new position vector from current position vector:

xn+1 = xn +
∆t

kBT
Dn · Fn + Rn

I xn+1: new position vector
I xn: old position vector
I ∆t: time step
I kB : Boltzmann constant
I T : Temperature
I Dn: Translational diffusion matrix
I Fn: Collective vector of interparticle forces
I Rn: Random force generated from Gaussian distribution of mean

and zero variance (〈RnRm〉 = 2Dn∆tδnn)
I δnn: Kronecker delta symbol
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Brownian Dynamics Algorithm

I Second order algorithm by Iniesta and Garcia de la Torre. [6]

I 1st order BD and 2nd order BD is analogous to the
Runge-Kutta 2 and Euler Method in numerical differential
equations.
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Brownian Dynamics Algorithm

I Steps:

1. Perform first order Brownian Dynamics algorithm to determine
intermediate position vector xn+1

2. Compute new position vector using:

xn+1 = nn +
1

2

∆t

kBT
(Dn · Fn + Dn+1 · Fn+1) + Rn+1

〈Rn+1Rn+1〉 = (Dn + Dn+1)∆t, 〈Rn+1〉 = 0

I Dn+1: Translational diffusion matrix calculated using xn+1

I Fn+1: Collective vector of interparticle forces calculated using
xn+1

I Rn+1: Random force calculated using xn+1
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Brownian Dynamics Algorithm

I Brownian dynamics algorithm is a simplification of the
Langevin equation. In general, larger time steps are used for
Brownian dynamics than Langevin equation. [11]

I At time-scale much larger than momentum relaxation time,
we can ignore inertia.

I Specifically:

∆t >> m Dii

kBT = m
6πηa

I Dii : i th diagonal entry of D
I m: mass of segment
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Translational Motion Solver [6]

Langevin Equation

mv̇i = −
N∑

j=1

ξij · vi + Fi +
N∑

j=1

αij · fj , 1 ≤ i ≤ N

I vi : velocity of the ith bead

I Fi : sum of interparticle forces acting on segment or bead i
(model dependent)

I
∑

j αij · fj : randomly fluctuating force

I ξij : translational friction tensor
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Conclusion

I We presented three models of DNA. On the polymer level, we
presented the freely-jointed chain and the worm-like chain. On
the molecular level, we presented the beads-on-a-chain model.
The different levels of modeling are not mutually exclusive
you can add levels of complexity to the your basic model. E.g.
beads-on-a-chain model can be added to the worm-like chain
model.

I We also presented three different methods of simulating DNA
movement, in increasing order of complexity: the Metropolis
Monte-Carlo method, the Brownian Dynamics Algorithm
method and the Langevin Equation method. Once again, the
level of complexity that we choose for the simulation depends
on the questions we are trying to solve with the simulation.
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