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Presentation Preview

• What is motion planning?

• What are differential constraints?

• Basic definitions

• Problem specification

• Solution strategies

• Specific algorithm: KPIECE

• Recommended reading, motion planning software
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What is Motion Planning?

• Find a set of motions that will 
navigate a robot from an initial 
state to a goal region

• Applications:

• Character animation

• Driverless cars

• Robotic surgery

• Molecular design

• AI Planning
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What are Differential Constraints?

• Equations that describe allowable 
robot motions

• Represent physical models

• Paddling a boat on a river 

• Various car models 

• Reeds-Shepp: reverse, park, forward

• Dubin’s: park, forward

• Differential drive robots (two wheels 
with motors, one passive wheel)

• Newtonian mechanics (particle 
physics)
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Problem/Solution Categories

• Motion Planning without Differential Constraints
• Combinatorial

• Complete, i.e. guaranteed to find solution if it exists

• Exact, can solve most problems, but hard to implement and slow

• Sampling-based
• Probabilistically complete, i.e. guaranteed to find solution as sample size → ∞

• Weaker guarantees, but easy to implement and fast

• Motion Planning with Differential Constraints
• Decoupled

• Plan without physics first, then use path as basis for solution

• Sampling-based
• Account for physics up front

511/20/2012



Problem Geometry

• World 𝒲

• Ambient space, typically ℝ2 or ℝ3

• Robot 𝒜

• Rigid body, or a chain of bodies

• Mobile

• Obstacle region 𝒪

• “Occupied” subset of 𝒲

• Fixed
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Representation of 𝒜 and 𝒪

• Combinatorial methods take 
geometry into account

• Sampling methods use geometry 
during collision detection

• Most treat collision detection as a 
black box

• We can abstract over geometry
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Problem Kinematics, Configuration Space

• Robot 𝒜 has certain allowable 
transformations, such as:

• Translations = ℝ𝑛

• Rotations = 𝑆𝑂(𝑛) = special 
orthogonal group

• Configuration space 𝒞 is set of 
all possible transformations

• E.g. 𝒞 = ℝ𝑛 × 𝑆𝑂 𝑛 = 𝑆𝐸(𝑛) = 
special Euclidean group

• http://youtu.be/SBFwgR4K1Gk
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Differential Constraints, Phase/State Space

• In a first-order world…

• Differential constraints restrict the allowable velocities of the robot at each 
point in 𝒞

• Need higher-order for dynamics (e.g. Newtonian mechanics)…

• Differential constraints also restrict higher-order derivatives

• Phase space pairs configurations with derivatives, sometimes called the 
tangent bundle

• A state space 𝒳 can be either 𝒞 or the associated phase space
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Actions and Action Space

• An action (or control) 𝑢 is a 
variable which can be applied to 
exert a force on the robot 𝒜

• An action trajectory is a function 
mapping time to actions

• Action space 𝑈(𝑥) is the set of 
all possible actions in a given 
state
• Not necessarily homogeneous

• Includes termination action 𝑢𝑇
• Example: Jetpack with fuel
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State Transition Equation

• State transition equation  𝑥 =
𝑓 𝑥, 𝑢 , ∀𝑥 ∈ 𝒳, ∀𝑢 ∈ 𝑈(𝑥)

• 𝑓 contains the differential 
constraint equations

• Integration of 𝑓 for a particular 
state and action pairing yields a 
new state

• State trajectory is a mapping of 
time to a series of states
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Consequence: Region of Inevitable Collision

• States in which no action 
trajectory can avoid collision 
with 𝒞𝑜𝑏𝑠

• Generally not computed, 
unknown how to detect 
collisions

• Problematic for high momentum 
systems

• Example: plane flying into a cave
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Problem Formulation

• Input

• Time interval 𝑇 = [0,∞)

• Initial state 𝑥1 ∈ 𝒳𝑓𝑟𝑒𝑒

• Goal region 𝒳𝐺 ⊂ 𝒳𝑓𝑟𝑒𝑒

• Output

• Action trajectory  𝑢 ∶ 𝑇 → 𝑈

• State trajectory  𝑥 satisfies  𝑥 0 = 𝑥1, ∃ 𝑡 > 0 for which  𝑢 𝑡 = 𝑢𝑇 and 
 𝑥 𝑡 ∈ 𝒳𝐺
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Solution Strategies

• Exact solutions
• Planning under just geometric constraints is already P-SPACE hard [3]

• Generally unknown whether planning with differential constraints is decidable [4]

• Polynomial time solution available for point-mass moving in 3 space

• Plan and Transform 
• Feasible

• Brief description

• State Sampling
• Many methods use this framework

• Example: RRTs

• Algorithm: KPIECE
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Solution Strategy: Plan and Transform

1. Compute: a path 𝜏 ∶ [0, 1] → 𝒞𝑓𝑟𝑒𝑒 ignoring constraints

2. Transform: 𝜏 into a new path 𝜏′ to satisfy constraints

• Example: subdivide 𝜏 and use a local planning method to replace the 
subdivision with a path that accounts for constraints

3. Check: If 𝜏 satisfies constraints over the whole interval then 
terminate, otherwise go to 2
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Solution Strategy: State Sampling

1. Initialize: let 𝒢(𝑉, 𝐸) represent an undirected search graph, where 
𝑉 ⊂ 𝒳𝑓𝑟𝑒𝑒 and 𝐸 is a set of edges that store action trajectories

2. Select: choose a vertex 𝑥𝑐𝑢𝑟 ∈ 𝒢 for expansion

3. Plan: generate a motion primitive  𝑢𝑝 ∶ 0, 𝑡𝐹 → 𝒳𝑓𝑟𝑒𝑒 such that 
𝑢 0 = 𝑥𝑐𝑢𝑟 and 𝑢 𝑡𝐹 = 𝑥𝑟 for some 𝑥𝑟 ∈ 𝒳𝑓𝑟𝑒𝑒.

4. Insert: insert  𝑢𝑝 into 𝐸, and 𝑥𝑟 into 𝑉

5. Check: return if 𝒢 encodes a solution path

6. Repeat
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Example: Rapidly Exploring Random Tree

• Selecting a vertex:

• Define a metric on the state space 

• Generate a random state 

• Choose vertex in graph that is closest 
to random state (nearest neighbor)

• Expanding the graph:

• Heuristically choose controls that 
“pull” chosen vertex to random state

• Integrate transition equation to 
produce new state

• Add new vertex and edge to graph
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KPIECE Introduction

• Kinodynamic Motion Planning by Interior-Exterior Cell Exploration

• “A Sampling-Based Tree Planner for Systems with Complex Dynamics,” 
Sucan and Kavraki, 2012

• Why am I presenting this algorithm?

• Authors emphasize it is designed specifically for systems with complex 
dynamics

• Uses physics engine to compute state transitions

• Implemented in Open Motion Planning Library
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KPIECE Algorithm Pseudocode

1. 𝑇 = 𝐈𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐳𝐞𝐓𝐫𝐞𝐞 𝑥1

2. 𝐟𝐨𝐫 𝑖 ← 1…𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐝𝐨

3. 𝜈 = 𝐒𝐞𝐥𝐞𝐜𝐭𝐌𝐨𝐭𝐢𝐨𝐧 𝑇

4. 𝐄𝐱𝐩𝐚𝐧𝐝𝐓𝐫𝐞𝐞 𝑇, 𝜈

5. 𝐢𝐟 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 𝐭𝐡𝐞𝐧

6. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

7. 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞𝐏𝐫𝐨𝐠𝐫𝐞𝐬𝐬()

8. 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛𝑜 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
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How Does KPIECE Relate to Previous Work?

• Uses standard state sampling framework 

• Uses concept of a “motion tree” instead of a “state graph” but this is a technicality

• Uses a physics engine to integrate state transition equation

• This is not new, but minimizing number of evaluations is a high priority

• Discretizes a projection of state space into cells

• Not the same as “cell decomposition” for geometric planning

• Distinction between interior and exterior cells is new

• Contributions

• Way in which they use information collected during sampling decreases number of 
evaluations needed relative to other methods
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Physics Simulation

• Simulator evaluate 𝑓 over a 
simulation step size 𝑟

• Pros:

• Physically accurate, can be treated 
as black-box

• Can use different simulators 

• Cons: 

• Requires uni-directional planning

• Cost of simulation > cost of 
integration
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Motion Structure 1

• A motion 𝜈𝑖 is defined as 
𝑥𝑖 , 𝑢𝑖 , 𝑡𝑖 , 𝑝𝑖

• 𝑥𝑖 ∈ 𝒳 is the starting state of 
the motion

• 𝑢𝑖 ∈ 𝑈 is the action applied at 
that state, for duration 𝑡𝑖 ∈ ℝ≥0

• 𝑡𝑖 is an integer multiple of the 
simulation step size 𝑟

• 𝑝𝑖 is the motion’s parent motion
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Motion Structure 2

• 𝑡𝑖 is obtained by sampling a number of simulation steps to perform 

• 𝑆𝑡𝑎𝑡𝑒𝑠(𝜈) is the set of states along a motion 𝜈

• 𝐴𝑆 =  𝜈 𝑆𝑡𝑎𝑡𝑒𝑠(𝜈) is the set of all states in the tree

• Neither 𝑆𝑡𝑎𝑡𝑒𝑠(𝜈) nor 𝐴𝑆 are explicitly stored

• New motions expanded from an existing motion 𝜈 can start at any 
state in 𝑆𝑡𝑎𝑡𝑒𝑠 𝜈

• 𝑇 is a tree of motions

• 𝑇 is initialized with a motion 𝜈1 = (𝑥1, 𝑛𝑢𝑙𝑙, 0, 𝑛𝑢𝑙𝑙)
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State Space Projection

• Let 𝑃𝑟𝑜𝑗 ∶ 𝒳 → ℝ𝑘 be a projection from 𝒳 to a Euclidean space

• Input to algorithm, random default provided

• Purpose of 𝑃𝑟𝑜𝑗 is to provide a space in which to estimate coverage

• The space should be representative for the problem being solved

• To generate a projection from 𝑛-dimensional 𝒳 to ℝ𝑘:

• 𝑘 vectors in ℝ𝑛 are randomly sampled from a normal distribution

• Vectors are orthonormalized, placed into matrix V

• For a state 𝑥, and a projection V, the projection of 𝑥 is 𝑝 = V𝑇𝑥
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Projection Discretization into Cells

• Define 𝐶𝑜𝑜𝑟𝑑 ∶ ℝ𝑘 → ℤ𝑘 as:

𝐶𝑜𝑜𝑟𝑑 𝐩 =
𝑝1 − 𝑜1
𝑑1

, … ,
𝑝𝑘 − 𝑜𝑘
𝑑𝑘

= 𝐳

• 𝐩 = 𝑝1, … , 𝑝𝑘 ∈ ℝ𝑘

• 𝐨 = 𝑜1, … , 𝑜𝑘 ∈ ℝ𝑘 is an arbitrary point designated as the origin

• How to select 𝑑𝑖 is discussed later

• ∀𝐳 ∈ ℤ𝑘, define the corresponding cell in 𝒳 to be:

𝐶𝑒𝑙𝑙 𝐳 = 𝑥 ∈ 𝒳 𝐶𝑜𝑜𝑟𝑑 𝑃𝑟𝑜𝑗 𝑥 = 𝐳}
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Assigning Motions to Cells

• Motions are part of a cell if all their 
states are in the cell

• Every motion resides in one cell

• Motions are split before adding 
them to the tree of motions

• When a motion 𝜈 is to be added, 
𝑆𝑡𝑎𝑡𝑒𝑠 𝜈 is generated

• For every 𝑥 ∈ 𝑆𝑡𝑎𝑡𝑒(𝜈), 
𝐶𝑜𝑜𝑟𝑑(𝑃𝑟𝑜𝑗 𝑥 ) is computed

• Decide which parts of the motion 
go to which cells
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State Space Coverage Estimation

• For every cell coordinate 𝐳 ∈ ℤ𝑘, the coverage of 𝐶𝑒𝑙𝑙(𝐳) is

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝐳 =  𝜈= 𝑥,𝑢,𝑡 ∈𝑀𝑜𝑡𝑖𝑜𝑛𝑠(𝐳) 1 +
𝑡

𝑟

• In other words, coverage is the number of states in a cell

• Assume coverage estimates for cells are relevant for coverage of 𝒳

• Let 𝑀𝑐 ⊂ ℤ𝑘 denote the minimum # of cells needed to cover 𝐴𝑆

• Cells included in 𝑀𝑐 are called instantiated cells
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Distinguishing Interior and Exterior Cells

• For every 𝐳 = z1, … , z𝑘 ∈ ℤ𝑘, the neighbors of 𝐶𝑒𝑙𝑙(𝐳) are

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝐳 = 𝐶𝑒𝑙𝑙 𝑤 ∈ 𝑀𝑐 𝑤 = z1, … , z𝑖−1, 𝑦, z𝑖+1, … , z𝑘 ,

for 𝑦 = z𝑖 − 1 or 𝑦 = z𝑖 + 1}

• The max # of neighbors is 2𝑘

• Cells with max # of neighboring cells are considered interior

• Cells with less than max # of neighboring cells are considered exterior

• Focusing the exploration on exterior cells allow the motion planner to 
cover state space faster

• For high dimensional spaces the definition of interior cells can be relaxed
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Assigning Cells Importance 1

• Importance of cells is used in selection of motions

• Cells are maintained in heaps for quick access

• Prefers: 

• expanding from cells that are less covered

• cells that have been selected for expansion fewer times

• cells with fewer neighbors

• cells that have been instantiated more recently

• cells that led to “good” progress (i.e. more coverage per simulation time 
spent)
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Assigning Cells Importance 2

• 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝐳 =
log ℐ ⋅score

𝒮⋅ 1+ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝐳 ⋅𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝐳)

• ℐ is the number of the iteration at which the cell was instantiated

• 𝒮 is the number of times the cell was selected for expansion

• score reflects exploration progress

• score is computed by 

𝑃 = 𝛼 + 𝛽 ⋅
𝐶𝑎𝑓𝑡𝑒𝑟 − 𝐶𝑏𝑒𝑓𝑜𝑟𝑒

𝑇𝑎𝑓𝑡𝑒𝑟 − 𝑇𝑏𝑒𝑓𝑜𝑟𝑒

score = score ⋅ min(𝑃, 1)
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Selecting 𝛼 and 𝛽

• 𝛼 represents the multiplicative penalization of a cell’s score if no 
progress is made from that cell

• 𝛼 should be less than 1 but not close to zero 

• 𝛼 = 0.7 is the default value

• 𝛽 is chosen such that 𝑃 ends up being larger than 1 for only 
expansions that have led to significant progress

• 𝛽 depends on how coverage is computed

• 𝛽 = 5 is the default value
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Selecting Cell Sizes

• Depends on the projection used

• Guidelines:
• < 10% of the motions cover more than 2 cells in one simulation step

• > 50% of the motions need to be 3 simulation time-steps or longer

• Avg. number of parts in which a motion is split should be small (1-4)

• At least some interior cells need to be created

• Avg. number of samples per cell should range from tens to hundreds

• Info collected during execution is used to alter cell sizes

• Algorithm is restarted

• This process converges to “good” cell sizes after a few iterations
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𝜈 = 𝐒𝐞𝐥𝐞𝐜𝐭𝐌𝐨𝐭𝐢𝐨𝐧 𝑇

1. Choose whether to select from an internal or external cell, with 
preference given largely to external cells (75%)

2. Choose the cell with highest importance from appropriate heap

3. Increase the cell’s selection count

4. Randomly select a motion 𝜈 from within the cell

5. Return 𝜈
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𝐄𝐱𝐩𝐚𝐧𝐝𝐓𝐫𝐞𝐞 𝑇, 𝜈

1. Randomly select a state from 𝑆𝑡𝑎𝑡𝑒𝑠(𝜈) to create a new motion 𝜈𝑛
2. Set 𝜈𝑛’s parent to 𝜈

3. Randomly sample an action

4. Randomly sample a number of steps

5. Run the simulator with the selected action starting at 𝜈𝑛

6. For each new state in 𝜈𝑛, compute its cell in ℤ𝑘

7. If the motion crosses a cell boundary, break it up

8. Add the motion(s) to appropriate cells
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𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞𝐏𝐫𝐨𝐠𝐫𝐞𝐬𝐬()

1. Compute 𝑃 = 𝛼 + 𝛽 ⋅ (𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜 𝑡𝑖𝑚𝑒)

2. Multiply the score of the initially selected cell by min(𝑃, 1)

11/20/2012 35



Performance Comparison
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KPIECE Algorithm Extensions

• Multiple levels of discretization

• Goal biasing

• Algorithm should greedily attempt 
to reach the goal

• Parallel implementation
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Recommended Reading and MP Software

• Books

• Planning Algorithms, LaValle 2006

• Robot Motion Planning, LaTombe 1998

• Papers

• http://gamma.cs.unc.edu/research/robotics/

• http://robotics.cs.unc.edu/publications.html

• Software

• Open Motion Planning Library, http://ompl.kavrakilab.org/
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Thanks!


