Quaternions

Why quaternions?

In computer graphics, we often have to specify rotation, or orientation, of an objectin relation
to the world coordinate system. For aerodynamic model, we need to calculate the rotational veloc-
ities, etc relative to the fixed body coordinate system. There are 3 main approaches for specifying
orientation and converting the angular velocities to the orientation of a moving object in the world
coordinates: Euler Method, homogeneous matrices, and quaternions. Each has its own particular
merits and disadvantages.

The most popular and intuitive method is probably the Euler’s Method, which uses a se-
quence of three angles to describe the orientation of a moving object; while the homogeneous ma-
trix is a convenient way to specify the transformation of coordinate systems and it eliminates the
intermediate process to compute some transcendental functions required by the Euler’s Method in
acrodynamics calculations. So, why quaternions?

Quaternions require 4 parameters (defined below) vs. 3 in the Euler’s Method. But, quater-
nions don’t have the singularity problem at 8 = 90 or -90 degrees. From user interface’s point of
view, quaternions don’t require the user to enter all elements in the homogeneous matrices. Unit
quaternions (having norm = 1) capture all the geometry, topology, and group structure of 3-dimen-
sional rotations in the simplest and compact way possible, though they have problem in defining
the unique Euler’s angles, if such information is needed. Nevertheless, quaternions have become
a powerful, simpler, cheaper, and better behaved treatment of rotations in computer graphics.

Basics and Definitions

Quaternions can be defined in several different but equivalent ways. Quaternion can be de-
scribed as an algebraic quantity ¢ = ix + jy + kz + w, or as a point linearly transformed to 4-space
(x,y, z, w), or as a 3-vector with a scalar [v, w]. But, it always comprises four parameters, 1 of
which 1s the scalar part and the rest 3 parameters is the vector portion.

FORMS:
qg=[vwl = [(x,y,z)w] = [x,y,z,w];ve R3;x,y,z,weR

g =Iix+jy+kz+wix, y,z,we R;i2 :f2 = k2 = -]

ADDITION:

g+q = [v,w] +[v,w] = [v+v.w+w]
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Quaternions

MULTIPLICATION:

gq = |v,w] [Vv.w'] = (ix+jy+kz+w) (ix'+jy' +kz'+w)
gq = (ww'— (X" +yy' +22)) +wV'+wv+v Xy = [(WV' +wv+vXv), ww' —vey']

Note: "x" and ™" denote for vector cross product and dot product.

CONJUGATE:

g* = [v,wl* = [—v.w]
NORM, Il g Itis defined as:
N(gq) = ag* = g¢*g = w +vev = w +x'+y +w” = [dl’
INVERSE:
' = q/N@ = ¢*/lal’
UNTT QUATERNION is a quaternion q such that its N(q) = 1. If both q and q” are unit quaternions,
N{gqq) =1

-1
g =g*

g = [VsinQ,cosQ] 3P

All real numbers s can be identified by quaternions q = [0, 5] and all vectors v = (x,y,z) can
be represented by quaternion ¢ = [v, 0]. Unit quaternions provide an efficient way to represent ro-
tations. The orientation of a rigid body can be described as a rotation about an axis u by rotation
angle 6. This becomes the basis of using quaternions for specifying rotation,

Rotational Operators

As mentioned above, rotation of an angle 8 about some unit axis u can be specified by a unit
quaternion. Note that this choice is not unique, since rotation by 0 about u is the same as rotation
by -6 about -u. (By the way, it’s pretty easily to derive the corresponding 3x3 rotation matrix from
0 and u. We’ll state the relationship between the 3x3 rotation matrix and quaternions later.)

The quaternion g corresponding to this rotation by an angle 8 about unit axis u is given by

q = [ sin(6/2) u, cos(6/2)],
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Quaternions

That is, the scalar partis cos(9/2), and the vector part is simply the vector u scaled by sin(6/2). This
quaternion will always have unit magnitude. What does it mean to say that ¢ corresponds to this
rotation? We rotate vectors with quaterions by the following formula:

V’=q*v*q'1

where v is the original vector and v’ is the rotated one. The symbol * stands for quaternion multi-
plication (v can be turned into a quaternion just by setting the scalar part to 0). If v =[1, s], then

a scalar after quaternion transformation is still itself by commutivity, i.e. v = q*v¥*ql= s*q*qI=ss.

EXAMPLE: What quaternion corresponds to rotation by 90 degrees about the z axis?
In this case, the angle 8 is w/2 and the unit axis is (0,0,1). So our guaternion is:
q = [sin(m/4) (0,0,1); cos(w/d)] = 0, 0, 0.707, 0.707]

Note that g 1s a unit quaternion, as we expect. Since it is a unit quaternion, it’s inverse is easy to
find - just reverse the vector part:: g1 = [0, 0, -0.707, 0.707] Now if we take any vector v,

and make it into a quaternion by setting the scalar part to 0, and then compute v’ =q ¥ v * q‘l,
then v” will be v rotated by 90 degrees about the z axis.

Given a unit vector u = (uy, uy, uZ)T, and an angle 6, the rotation matrix corresponding to
rotation about u by 8 is given by

) . &
uu Vg + cost uyuIVe —u 8inb uu Vo + I, sin@f (*)
R = uxuyVe +u, sinb uyuyVB + cosf “z”yVe - uxsme

w V- uysm@ uyquB +u, sin® wuuV,+cosd

where Vg =1-cos 8. The corresponding unit quaternion is given by q = [ (sin 6/2) u, c0s8/2] =
[ x, y,2, w]. We caninvert the relation to express u and trig functions of 8 in terms of quaternion
parameters (assuming 0 <= 0 <= 2x) by the following equations:
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cosB = 2w2— 1

sin® = 2wl —w’

V, = 2(1—w2j

U= #(x,y,z)T

.\/I—wz

Substituting the above equations into the rotation matrix R in (*) gives us a formula for a rotation
matrix in terms of the parameters of the corresponding quaternion:

w2+xz—y2—z2 2 (xy—wz) 2 (xz+wy)
2 (xy +wz) wz—x2+y2—22 2 (yz —wx)

2(xz-wy) 2 (yz +wx) 14/27)c2*y2+22

The detailed theorem and derivation of this conversion is given in both the SIGGRAPH’93
course notes and the paper titled, "Flight Simulation Dynamic Modeling Using Quaternions" by
Cooke/Zyda/Pratt/McGhee as well. More details on rotational derivatives will be described later
in flight dynamic modeling section.

REVIEW:

Delt = V|2 cosH
P=dxde M = V|2 sin6

B ¥ 2] X X0, Y00 251 = [912y — 2y¥902 1%y = X1 25,%1 ¥, — X,V

NoteBook 1 Page 11 March 31, 1994



1 Quaternion basics
A quaternion comprises four parameters:

¢ = [4s; o Oy, 92] (1
where g, is the scalar portion, and (gs, gy, ¢.)” is the vector portion. Sometimes we abbreviate
and write

q=[s,7]. (2)
A multiplication operation on quaternions is defined as
[s1,81] % [s2, T2] = [8182 — @1 - Ta, 5102 + 5281 + T X Ta). (3)
For ¢ = [s, 7], we also have
g = [s, “ﬁ] (4)
lldl = vax3=+/'s?+]|ldl]* (5)
1

o= 2=t ©)

¢ llal?
(M)

Note that if ¢ is a unit quaternion, ¢~ = ¢. Unit quaternions correspond to rotations (elements
of SO(3)). Let # be a vector to be rotated by quaternion g. We have the following formula for

the roated vector 7,:
o =qevxq L. (8)

In the above equation, the vectors ¥ and 7, are “casted” to a quaternion by setting the scalar
part of the quaternion equal to 0. For example, the vector 7 is identified with the quaternion

[0, 7).



2 Rotational operators: R and ¢

Given a unit vector £ = (kz, ky, k2)T, and an angle #, The rotation matrix corresponding to
rotation about k by # is given by

kwkx% + 09 kyka:vb - szG kzkz% + kysﬁ
R=| kokyVo + k.5 kyky Ve 4+ C kB kyVo — kS8 |, (9)
k.'r:kz% - kysﬂ kykz% + ka:SB kzkzvﬂ + Gﬂ

where Cy = cos®, Sy =sin#, and V3 = vers § = I — cos . The corresponding unit guaternion is
given by
g . #..
g = [cos 3 (sin §)k] (10)

This gives the quaternion parameters [¢,;¢s, ¢y,4;] in terms of k and 6. We can invert the
realation to express k and trig functions of # in terms of quaternion parameters (assuming
0<0<2n):

cosf = 2% -1 (11)
sind = 2g,4/1—g¢q,2 (12)
vers § = 2(1—g,%) (13)
ko= (14)

1 T
m(qx,qy’qz)

Substituting the above equations into (9) gives us a fromula for a rotation matrix in terms of
the parameters of the corresponding quaternion:

G+ a2 —%  gylo — %0s  0:9s + 4yds
k=2 9=y + 4245 Qyz + Q'.sz —5  aqy — q:u‘Isl , (15)
9zqz — Qyls Qydz + Gzqs QZ2 + Qsz —3



3 Rotational derivatives: R, dJ, and §

Differentiating (15) gives us R in terms of ¢ and ¢

, 2920s + 445} Gyle + qyTo — G0 — %0 2o + Q0o — Gy¥s — By s
R=2| 6oty + 08y ~ Gt~ s Afy@y+9s8s) GG+ 00y~ ol — Gls |,
Gelz + 029, — Qyds — Qylds  Tylz + Qs — Iods — 9z Q(QzQ'z + qu.s)

(16)

Now for any rotation matrix R which is changing with time according to & we have the relation
R=(wx)R, (17)
where wx is the skew symmetric matrix such that (wx)}¥ = & x ¥ for all 7. That is,

0 _wz +wy
wx = | +w, 0 —we (18)

iFrom (17) we have ) ]
wx = RR™* = RRT. (19)

Substituting (16) and (15) into the above equation gives us an expression for wx soley in terms
of ¢ and ¢. [After performing the matrix multiplication on the right hand side of (19), we are left
with an extremely hairy matrix. However, it is much nicer than it initially appears. Using the
equation ¢, + g5 4 g% + ¢, = 1 and its derivative, g4, + gods + ¢y Gy + ¢2¢, = 0, many terms
drop out, and we are left with a very simple matrix.] Because of the trivial mapping between
the vector & and the matrix wx, once we have the an expression for wx, it is a simple matter
of picking out the proper matrix elements to obtain expressions for the three components of &
in terms of ¢ and §. After doing this, we find

W -z +¢s —q: gy ;.s
@ = Wy =2 —qy +q: +q4s —4q» q'z . (20)
Wy —q: —qy +qx +gs q‘y

It seems we are mapping a four dimensional space to a three dimensional space, but actually
becanse of the constraint that ¢ be of unit magnitude, there are really only three degrecs of
freedom in . The constraint can be written ¢,q» + gy¢y + ¢-4; + ¢s¢s = 0. Incorporating this
into the above equation gives us a 4 x 4 transformation matrix:

We -z 4 —¢. gy gs
Gl _jw |9l & +&: +4 -4 dr 91
[ 0 ] W ~qs —qy +q: G, gy | (1)
0 +¢s +g¢x gy +q g

The matrix of (21) is always invertible, and so we can also express § in terms of &:

0s —qx —@y —4: +4 Wg =Gz —0y —4:
i= Qa: - E s e —qy s Wy | _ l t4 +¢ —qy | - (22)

y 2 ¢ +¢ Tz +qy ws 27 -2 +¢ e

4z *oy —Qr +G  +q. 0 +qy —qr +4s



