WRAP-UP FROM LAST LECTURE ...

Data collection → Data processing → Exploratory analysis & Data viz → Analysis, hypothesis testing, & ML → Insight & Policy Decision
Some models only work on continuous numeric data

Convert a binary variable to a number

• `health_insurance = {“yes”, “no”} → {1, 0}`

Why not {-1, +1} or {-10, +14}?

• 0/1 encoding lets us say things like “if a person has healthcare then their income increases by $X.”

• Might need {-1, +1} for certain ML algorithms (e.g., SVM)
DISCRETE TO CONTINUOUS VARIABLES

What about non-binary variables?
My main transportation is a \{BMW, Bicycle, Hovercraft\}
One option: \{ BMW \rightarrow 1, Bicycle \rightarrow 2, Hovercraft \rightarrow 3 \}
- Problems ???????????

One-hot encoding: convert a categorical variable with N values into a N-bit vector:
- BMW \rightarrow [1, 0, 0]; Bicycle \rightarrow [0, 1, 0]; Hovercraft \rightarrow [0, 0, 1]

```python
# Converts dtype=category to one-hot-encoded cols
cols = ['BMW','Bicycle','Hovercraft']
df = pd.Series(cols)
df = pd.get_dummies( df )
```
CONTINUOUS TO DISCRETE VARIABLES

Do doctors prescribe a certain medication to older kids more often? Is there a difference in wage based on age?

Pick a discrete set of bins, then put values into the bins.

Equal-length bins:
• Bins have an equal-length range and skewed membership
• Good/Bad ?????????

Equal-sized bins:
• Bins have variable-length ranges but equal membership
• Good/Bad ?????????
BIN SIZE
DIFFERENT NUMBER OF BINS

https://web.ma.utexas.edu/users/mks/statmistakes/dividingcontinuousintocategories.html
Skewed data often arises in multiplicative processes:

- Some points float around 1, but one unlucky draw → \(0 \)

Logarithmic transforms reduce skew:

- If values are all positive, apply \(\log_2 \) transform
- If some values are negative:
 - Shift all values so they are positive, apply \(\log_2 \)
 - Signed log: \(\text{sign}(x) \times \log_2(|x| + 1) \)
SKEWED DATA

\[\log_2 \] transform on airline takeoff delays
HISTOGRAM BINS AND WIDTHS

Square formula

\[\text{bins} = \sqrt{n} \]
\[\text{binwidth} = \frac{\max(\text{values}) - \min(\text{values})}{\sqrt{n}} \]

Sturges formula

\[\text{bins} = \text{ceil}(\log_2 n) + 1 \]
\[\text{binwidth} = \frac{\max(\text{values}) - \min(\text{values})}{\text{ceil}(\log_2 n) + 1} \]

Rice formula

\[\text{bins} = 2 \times n^{1/3} \]
\[\text{binwidth} = \frac{\max(\text{values}) - \min(\text{values})}{\text{bins}} \]

Scott formula

\[\text{bins} = \frac{\max(\text{values}) - \min(\text{values})}{3.5 \times \frac{\text{stdev}(\text{values})}{n^{1/3}}} \]
\[\text{binwidth} = 3.5 \times \frac{\text{stdev}(\text{values})}{n^{1/3}} \]

Freedman-Diaconis formula

\[\text{bins} = \frac{\max(\text{values}) - \min(\text{values})}{2 \times \frac{\text{IQR}(\text{values})}{n^{1/3}}} \]
\[\text{binwidth} = 2 \times \frac{\text{IQR}(\text{values})}{n^{1/3}} \]
NEXT UP:

VISUALIZATION, GRAPHS, & NETWORKS
AND NOW!

Graph Processing
- Representing graphs
- Centrality measures
- Community detection

Natuural Language Processing
- Bag of Words, TF-IDF, N-grams
- (If we get to this today …)

Thank you to: Sukumar Ghosh (Iowa), Lei Tang (Yahoo!), Huan Liu (ASU), Zico Kolter (CMU)
Networks are systems of interrelated objects
Graphs are the mathematical models used to represent networks
In data science, we will use algorithms on graphs to answer questions about real-world networks.
A graph $G = (V,E)$ is a set of vertices V and edges E

Edges can be undirected or directed

\[
V = \{A, B, C, D\} \\
E = \{(A,B), (B,C), (C,D), (A,C)\}
\]

\[
V = \{A, B, C, D\} \\
E = \{(A,C), (C,A), (B,C), (B,D)\}
\]

Examples of directed vs undirected graphs ?????????????
GRAPHS

Edges can be unweighted or weighted

• Unweighted → all edges have unit weight

Examples of unweighted and weighted graphs ???????????????
Facebook posts (in black), and users liking or commenting on those posts
NETWORKX

NetworkX is a Python library for storing, manipulating, and analyzing (small- and medium-sized) graphs

- Uses Matplotlib for rendering
- https://networkx.github.io/
- `conda install -c anaconda networkx`

```python
import networkx as nx
G=nx.Graph()
G.add_node("spam")
G.add_edge(1,2)
print(list(G.nodes()))
print(list(G.edges()))
```

```
[1, 2, 'spam']
[(1,2)]
```
STORING A GRAPH

Three main ways to represent a graph in memory:

- Adjacency lists
- Adjacency dictionaries
- Adjacency matrix

The storage decision should be made based on the expected use case of your graph:

- Static analysis only?
- Frequent updates to the structure?
- Frequent updates to semantic information?
ADJACENCY LISTS

For each vertex, store an array of the vertices it connects to

Pros: ????
- Iterate over all outgoing edges; easy to add an edge

Cons: ????
- Checking for the existence of an edge is $O(|V|)$, deleting is hard
ADJACENCY DICTIONARIES

For each vertex, store a dictionary of vertices it connects to

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>{C: 1.0}</td>
</tr>
<tr>
<td>B</td>
<td>{C: 1.0, D: 1.0}</td>
</tr>
<tr>
<td>C</td>
<td>{A: 1.0}</td>
</tr>
<tr>
<td>D</td>
<td>{}</td>
</tr>
</tbody>
</table>

Pros: ???????????
- O(1) to add, remove, query edges

Cons: ???????????
- Overhead (memory, caching, etc)
ADJACENCY MATRIX

Store the connectivity of the graph in a matrix

Cons: ??????????
• $O(|V|^2)$ space regardless of the number of edges
Almost always stored as a **sparse matrix**
NetworkX uses an adjacency dictionary representation

- Built-ins for reading from/to SciPy/NumPy matrices

```python
# Make a directed 3-cycle
G=nx.DiGraph()
G.add_edges_from([('A','B'), ('B', 'C'), ('C', 'A')])

# Get all out-edges of vertex 'B'
print(G['B'])

# Loop over vertices
for v in G.nodes(): print(v)

# Loop over edges
for u,v in G.edges(): print(u, v)
```
ASIDE: GRAPH DATABASES

Traditional relational databases store relations between entities directly in the data (e.g., foreign keys)
• Queries search data, JOIN over relations

Graph databases directly relate data in the storage system using edges (relations) with attached semantic properties

Image thanks to Wikipedia
EXAMPLE GRAPH DATABASE

Two people, John and Sally, are friends. Both John and Sally have read the book, Graph Databases.

Nodes

- John
- Sally
- Graph Databases

Thanks to: http://neo4j.com
EXAMPLE GRAPH DATABASE

Two **people**, John and Sally, are **friends**. Both John and Sally have **read the book**, *Graph Databases*.

A named construct that **groups** nodes into sets

Labels
- Person
- Book

Next: assign labels to the nodes
EXAMPLE GRAPH DATABASE

Two people, John and Sally, are friends. Both John and Sally have read the book, Graph Databases.

Relationships ?????????

• John is a friend of Sally; Sally is a friend of John
• John has read Graph Databases; Sally has read Graph Databases
EXAMPLE GRAPH DATABASE

Can associate attributes with entities in a key-value way
• Attributes on nodes, relations, labels
Querying graph databases needs a language other than SQL. Recall: graph databases explicitly represent relationships:

- Adhere more to an object-oriented paradigm
- May be more suitable for managing ad-hoc data
- May scale better, depending on the query types (no JOINs)

Cypher query:

```cypher
# When did Sally and John become friends?
MATCH (sally:Person { name: 'Sally' })
MATCH (john:Person { name: 'John' })
MATCH (sally)-[r:FRIEND_OF]-(john)
RETURN r.since AS friends_since
```

Cypher query
BULBFLOW

Many graph databases out there:
• List found here: https://en.wikipedia.org/wiki/Graph_database

neo4j and Titan are popular, easy-to-use solutions
• https://neo4j.com/
• http://titan.thinkaurelius.com/

Bulbflow is a Python framework that connects to several backing graph-database servers like neo4j
• http://bulbflow.com/
• https://github.com/espeed/bulbs