
CMSC 330: Organization of
Programming Languages

More Ruby:
Methods, Classes, Arrays, Hashes

1CMSC 330 - Fall 2020

In Ruby, everything is an Object

Ruby is object-oriented
All values are (references to) objects
• Java/C/C++ distinguish primitives from objects

Objects communicate via method calls
Each object has its own (private) state
Every object is an instance of a class
• An object’s class determines its behavior:
• The class contains method and field definitions

Ø Both instance fields and per-class (“static”) fields

2CMSC 330 - Fall 2020

Everything is an Object

Examples
• (-4).abs

Ø integers are instances of class Fixnum
• 3 + 4

Ø infix notation for “invoke the + method of 3 on argument 4”
• "programming".length

Ø strings are instances of String
• String.new

Ø classes are objects with a new method
• 4.13.class

Ø use the class method to get the class for an object
Ø floating point numbers are instances of Float

3

No-argument instance method of Fixnum

CMSC 330 - Fall 2020

Ruby Classes

Class names begin with an uppercase letter
The new method creates an object
• s = String.new creates a new String and makes s

refer to it
Every class inherits from Object

4CMSC 330 - Fall 2020

Objects and Classes
Objects are data
Classes are types (the kind of data which things are)
Classes are also objects

Integer, Float, and String are objects of type Class
• So is Class itself!

Object Class (aka type)
10 Integer
-3.30 Float
"CMSC 330" String
String.new String
[‘a’, ‘b’, ‘c’] Array
Integer Class

5CMSC 330 - Fall 2020

Two Cool Things to Do with Classes

Since classes are objects, you can manipulate
them however you like
• Here, the type of y depends on p

Ø Either a String or a Time object

You can get names of all the methods of a class
• Object.methods

Ø => ["send", "name", "class_eval", "object_id", "new",
"autoload?", "singleton_methods", ...]

6

if p then
x = String

else
x = Time

End
y = x.new

CMSC 330 - Fall 2020

Creating Strings in Ruby (cont.)

Ruby has printf and sprintf
• printf("Hello, %s\n", name);
• sprintf("%d: %s", count, Time.now)

Ø Returns a String

to_s returns a String representation of an object
• Can be invoked implicitly – write puts(p) instead of

puts(p.to_s)
Ø Like Java’s toString()

inspect converts any object to a string
irb(main):033:0> p.inspect
=> "#<Point:0x54574 @y=4, @x=7>"

9CMSC 330 - Fall 2020

Symbols

Ruby symbols begin with a colon
• :foo, :baz_42, :"Any string at all"

Symbols are “interned” Strings
• The same symbol is at the same physical address
• Can be compared with physical equality

Are symbols worth it? Probably not…

10

“foo” == “foo” # true
“foo”.equal? “foo” # false
:foo == :foo # true
:foo.equal :foo # true

CMSC 330 - Fall 2020

The nil Object

Ruby uses nil (not null)
• All uninitialized fields set to nil (@ prefix used for fields)

irb(main):004:0> @x
=> nil

nil is an object of class NilClass
• Unlike null in Java, which is a non-object
• nil is a singleton object – there is only one instance of it

Ø NilClass does not have a new method
• nil has methods like to_s, but not other methods

irb(main):006:0> nil + 2
NoMethodError: undefined method `+' for nil:NilClass

11CMSC 330 - Fall 2020

Quiz 1

What is the type of variable x at the end of the
following program?

12

p = nil
x = 3
if p then
x = “hello”

else
x = nil

end

A. Integer
B. NilClass
C. String
D. Nothing – there’s a type error

CMSC 330 - Fall 2020

Quiz 1

What is the type of variable x at the end of the
following program?

13

p = nil
x = 3
if p then
x = “hello”

else
x = nil

end

A. Integer
B. NilClass
C. String
D. Nothing – there’s a type error

CMSC 330 - Fall 2020

Arrays and Hashes

Ruby data structures are typically constructed
from Arrays and Hashes
• Built-in syntax for both
• Each has a rich set of standard library methods
• They are integrated/used by methods of other

classes

14CMSC 330 - Fall 2020

Array

Arrays of objects are instances of class Array
• Arrays may be heterogeneous

a = [1, "foo", 2.14]

C-like syntax for accessing elements
• indexed from 0
• return nil if no element at given index

irb(main):001:0> b = []; b[0] = 0; b[0]
=> 0
irb(main):002:0> b[1] # no element at this index
=> nil

15CMSC 330 - Fall 2020

Arrays Grow and Shrink

Arrays are growable
• Increase in size automatically as you access

elements
irb(main):001:0> b = []; b[0] = 0; b[5] = 0; b
=> [0, nil, nil, nil, nil, 0]

• [] is the empty array, same as Array.new
Arrays can also shrink
• Contents shift left when you delete elements

a = [1, 2, 3, 4, 5]
a.delete_at(3) # delete at position 3; a = [1,2,3,5]
a.delete(2) # delete element = 2; a = [1,3,5]

16CMSC 330 - Fall 2020

Iterating Through Arrays

It's easy to iterate over an array with while
• length method returns array’s current length

Looping through elements of an array is common
• We’ll see a better way soon, using code blocks

a = [1,2,3,4,5]
i = 0
while i < a.length

puts a[i]
i = i + 1

end

17CMSC 330 - Fall 2020

Arrays as Stacks and Queues

Arrays can model stacks and queues
a = [1, 2, 3]
a.push("a") # a = [1, 2, 3, "a"]
x = a.pop # x = "a"
a.unshift("b") # a = ["b", 1, 2, 3]
y = a.shift # y = "b"

Note that push, pop,
shift, and unshift
all permanently
modify the array

18CMSC 330 - Fall 2020

Hash

A hash acts like an associative array
• Elements can be indexed by any kind of value
• Every Ruby object can be used as a hash key,

because the Object class has a hash method

Elements are referred to like array elements
italy = Hash.new
italy["population"] = 58103033
italy["continent"] = "europe"
italy[1861] = "independence”
pop = italy[“population”] # pop is 58103033
planet = italy[“planet”] # planet is nil

19CMSC 330 - Fall 2020

Hash methods

new(o) returns hash whose default value is o
• h = Hash.new(“fish”); h[“go”] # returns “fish”

values returns array of a hash’s values
keys returns an array of a hash’s keys
delete(k) deletes mapping with key k
has_key?(k) is true if mapping with key k present
• has_value?(v) is similar

20CMSC 330 - Fall 2020

Hash creation

Convenient syntax for creating literal hashes
• Use { key => value, ... } to create hash table

• Use { } for the empty hash

credits = {
"cmsc131" => 4,
"cmsc330" => 3,

}

x = credits["cmsc330"] # x now 3
credits["cmsc311"] = 3

21CMSC 330 - Fall 2020

Quiz 2: What is the output?

A. Error
B. bar
C. bazbar
D. baznilbar

a = {“foo” => “bar”}
a[0] = ”baz”
print a[1]
print a[“foo”]

22CMSC 330 - Fall 2020

Quiz 2: What is the output?

A. Error
B. bar
C. bazbar
D. baznilbar

a = {“foo” => “bar”}
a[0] = ”baz”
print a[1]
print a[“foo”]

23CMSC 330 - Fall 2020

Quiz 3: What is the output?

A. Green
B. (nothing)
C. Blue
D. Error

a = { “Yellow” => [] }
a[“Yellow”] = {}
a[“Yellow”][“Red”] = [“Green”, “Blue”]
print a[“Yellow”][“Red”][1]

24CMSC 330 - Fall 2020

Quiz 3: What is the output?

A. Green
B. (nothing)
C. Blue
D. Error

a = { “Yellow” => [] }
a[“Yellow”] = {}
a[“Yellow”][“Red”] = [“Green”, “Blue”]
print a[“Yellow”][“Red”][1]

25CMSC 330 - Fall 2020

Quiz 4: What is the output?

A. Error
B. 2
C. 3
D. 0

a = [1,2,3]
a[1] = 0
a.shift
print a[1]

26CMSC 330 - Fall 2020

Quiz 4: What is the output?

A. Error
B. 2
C. 3
D. 0

a = [1,2,3]
a[1] = 0
a.shift
print a[1]

27CMSC 330 - Fall 2020

Defining Your Own Classes
class Point
def initialize(x, y)
@x = x
@y = y

end

def add_x(x)
@x += x

end

def to_s
return "(" + @x.to_s + "," + @y.to_s + ")"

end
end

p = Point.new(3, 4)
p.add_x(4)
puts(p.to_s)

constructor definition

class name is uppercase

instance variables prefixed with “@”

method with no arguments

instantiation

invoking no-arg method
28CMSC 330 - Fall 2020

Methods in Ruby

def sayN(message, n)
i = 0
while i < n
puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

List parameters
at definition

Invoke method

May omit parens
on call

Methods are declared with def...end

Methods should begin with lowercase letter and be defined before they are called
Variable names that begin with uppercase letter are constants (only assigned once)

29

Like print, but
Adds newline

CMSC 330 - Fall 2020

Note: Methods need
not be part of a class

Methods: Terminology

Formal parameters
• Variable parameters used in the method
• def sayN(message, n) in our example

Actual arguments
• Values passed in to the method at a call
• x = sayN("hello", 3) in our example

Top-level methods are “global”
• Not part of a class. sayN is a top-level method.

30CMSC 330 - Fall 2020

Method Return Values

Value of the return is the value of the last
executed statement in the method
• These are the same:

Methods can return multiple results (as an
Array)

31

def dup(x)
return x,x

end

def add_three(x)
return x+3

end

def add_three(x)
x+3

end

CMSC 330 - Fall 2020

Method naming style
Names of methods that return true or false
should end in ?

Names of methods that modify an object’s state
should end in !

Example: suppose x = [3,1,2] (this is an array)
• x.member? 3 returns true since 3 is in the array x
• x.sort returns a new array that is sorted
• x.sort! modifies x in place

32CMSC 330 - Fall 2020

No Outside Access To Internal State
An object’s instance variables (with @) can be
directly accessed only by instance methods
Outside class, they require accessors:

Very common, so Ruby provides a shortcut

33

def x
@x

end

def x= (value)
@x = value

end

A typical getter A typical setter

class ClassWithXandY
attr_accessor :x, :y

end

Says to generate the
x= and x and
y= and y methods

CMSC 330 - Fall 2020

No Method Overloading in Ruby

Thus there can only be one initialize method
• A typical Java class might have two or more

constructors
No overloading of methods in general
• You can code up your own overloading by using a

variable number of arguments, and checking at run-
time the number/types of arguments

Ruby does issue an exception or warning if a
class defines more than one initialize method
• But last initialize method defined is the valid one

34CMSC 330 - Fall 2020

A. I smelled Alice for nil seconds
B. I smelled #{thing}
C. I smelled Alice
D. Error

35

class Dog
def smell(thing)
"I smelled #{thing}”

end
def smell(thing,dur)
"#{smell(thing)} for #{dur} seconds”

end
end
fido = Dog.new
puts fido.smell(”Alice”,3)

Quiz 5: What is the output?

CMSC 330 - Fall 2020

A. I smelled Alice for nil seconds
B. I smelled #{thing}
C. I smelled Alice
D. Error – call from Dog expected two

args 36

class Dog
def smell(thing)
"I smelled #{thing}”

end
def smell(thing,dur)
"#{smell(thing)} for #{dur} seconds”

end
end
fido = Dog.new
puts fido.smell(”Alice”,3)

Quiz 5: What is the output?

CMSC 330 - Fall 2020

A. I smelled Alice for seconds
B. I smelled #{thing} for #{dur} seconds
C. I smelled Alice for 3 seconds
D. Error

37

class Dog
def smell(thing)
"I smelled #{thing}”

end
def smelltime(thing,dur)
"#{smell(thing)} for #{dur} seconds”

end
end
fido = Dog.new
puts fido.smelltime(”Alice”,3)

Quiz 6: What is the output?

CMSC 330 - Fall 2020

A. I smelled Alice for seconds
B. I smelled #{thing} for #{dur} seconds
C. I smelled Alice for 3 seconds
D. Error

38

class Dog
def smell(thing)
"I smelled #{thing}”

end
def smelltime(thing,dur)
"#{smell(thing)} for #{dur} seconds”

end
end
fido = Dog.new
puts fido.smelltime(”Alice”,3)

Quiz 6: What is the output?

CMSC 330 - Fall 2020

Inheritance

Recall that every class inherits from Object
class A ## < Object
def add(x)
return x + 1

end
end

class B < A
def add(y)
return (super(y) + 1)

end
end

b = B.new
puts(b.add(3))

extend superclass

invoke add method
of parent

39

b.is_a? A
true
b.instance_of? A
false

CMSC 330 - Fall 2020

Quiz 7: What is the output?
class Gunslinger
def initialize(name)
@name = name

end
def full_name
"#{@name}"

end
end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

41CMSC 330 - Fall 2020

A. Dirty, no good Billy the kid
B. Dirty, no good
C. Billy the Kid
D. Error

Quiz 7: What is the output?
class Gunslinger
def initialize(name)
@name = name

end
def full_name
"#{@name}"

end
end
class Outlaw < Gunslinger

def full_name
"Dirty, no good #{super}"

end
end
d = Outlaw.new("Billy the Kid")
puts d.full_name

42CMSC 330 - Fall 2020

A. Dirty, no good Billy the kid
B. Dirty, no good
C. Billy the Kid
D. Error

Global Variables in Ruby

Ruby has two kinds of global variables
• Class variables beginning with @@ (static in Java)
• Global variables across classes beginning with $

class Global
@@x = 0

def Global.inc
@@x = @@x + 1; $x = $x + 1

end

def Global.get
return @@x

end
end

$x = 0
Global.inc
$x = $x + 1
Global.inc
puts(Global.get)
puts($x)

define a class
(“singleton”) method

43CMSC 330 - Fall 2020

A. 0
B. 5
C. 3
D. 7

class Rectangle
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
r = Rectangle.new(1,2)
s = Rectangle.new(3,4)
puts r.measure()

44

Quiz 8: What is the output?

CMSC 330 - Fall 2020

A. 0
B. 5
C. 3
D. 7

class Rectangle
def initialize(h, w)

@@h = h
@w = w

end
def measure()
return @@h + @w
end
End
r = Rectangle.new(1,2)
s = Rectangle.new(3,4)
puts r.measure()

45

Quiz 8: What is the output?

CMSC 330 - Fall 2020

What is a Program?
In C/C++, a program is...
• A collection of declarations and definitions
• With a distinguished function definition

Ø int main(int argc, char *argv[]) { ... }
• When you run a C/C++ program, it’s like the OS

calls main(...)
In Java, a program is...
• A collection of class definitions
• With some class (say, MyClass) containing a method

Ø public static void main(String[] args)
• When you run java MyClass, the main method of

class MyClass is invoked

47CMSC 330 - Fall 2020

A Ruby Program is...

The class Object
• When the class is loaded, any expressions not in

method bodies are executed
def sayN(message, n)
i = 0
while i < n
puts message
i = i + 1

end
return i

end

x = sayN("hello", 3)
puts(x)

defines a method of Object
(i.e., top-level methods belong to Object)

invokes self.sayN

invokes self.puts
(part of Object)

48CMSC 330 - Fall 2020

