CMSC 330: Organization of Programming
Languages

Closures
(Implementing Higher Order Functions)

CMSC 330 - Fall 2020

Returning Functions as Results

» In OCaml you can pass functions as arguments
* tomap, fold, efc.

» and you can return functions as results

let pick fn n =

let plus _three x = x + 3 in

let plus four x = x + 4 in

if n > 0 then plus three else plus four
val pick fn : int -> (int->int) = <fun>

» Here, pick £n takes an int argument, and returns a
function # let g = pick fn 2;;
val g : int -> int = <fun>
g 4;; (* evaluates to 7 *)
CMSC 330 - Fall 2020

Multi-argument Functions

» Consider a rewriting of the prior code (above)
let pick fn n =
if n > 0 then (fun x->x+3) else (fun x->x+4)
» Here's another version

let pick fn n =
(fun x -> if n > 0 then x+3 else x+4)

» ... the shorthand for which is just

let pick fn n x
if n > 0 then x+3 else x+4 l.e., a multi-argument
function!

CMSC 330 - Fall 2020

Currying

» We just saw a way for a function to take multiple
arguments!

* |.e., no separate concept of multi-argument functions — can
encode one as a function that takes a single argument and
returns a function that takes the rest

» This encoding is called currying the function

* Named after the logician Haskell B. Curry

* But Schonfinkel and Frege discovered it
» So maybe it should be called Schonfinkelizing or Fregging

CMSC 330 - Fall 2020

Curried Functions In OCaml

» OCaml syntax defaults to currying. E.g.,

let add x y = x + vy

* is identical to all of the following:

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

» Thus:

« add has type int -> (int -> int)
e add 3 hastype int -> int
> add 3 is a function that adds 3 to its argument
e (add 3) 4 = 7
» This works for any number of arguments

CMSC 330 - Fall 2020

Syntax Conventions for Currying

» Because currying is so common, OCaml uses the
following conventions:

- -> associates from the right

> Thus int -> int -> int IS the same as
> int -> (int -> int)

* function application associates from the left

> ThusS add 3 4 is the same as
> (add 3) 4

CMSC 330 - Fall 2020

Quiz 1: Which f definition is equivalent?

let f ab=a/ b;;

.let £ b= funa ->a / b;;

.let £f=funa | b ->a/ b;;

. let £ (a, b) = a / b;;

.let £ = fun a -> (fun b -> a / b);;

o Q w »

CMSC 330 - Fall 2020

Quiz 1: Which f definition is equivalent?

let f ab=a/ b;;

.let £ b= funa ->a / b;;

.let £f=funa | b ->a/ b;;

. let £ (a, b) = a / b;;

.let £ = fun a -> (fun b -> a / b);;

o Q w »

CMSC 330 - Fall 2020

Quiz 2: What is enabled by currying?

>

Passing functions as arguments

B. Passing only a portion of the expected
arguments

. Naming arguments
. Recursive functions

O O

CMSC 330 - Fall 2020

10

Quiz 2: What is enabled by currying?

>

Passing functions as arguments

B. Passing only a portion of the expected
arguments

. Naming arguments
. Recursive functions

O O

CMSC 330 - Fall 2020

11

Multiple Arguments, Partial Application

» Another way you could encode support for multiple
arguments is using tuples
«let £ (a,b) = a / b (* int*int -> int *)
elet fab=a/b (*¥ int-> int-> int ¥*)

» |s there a benefit to using currying instead?

* Supports partial application — useful when you want to
provide some arguments now, the rest later

e let add a b = a + b;;
e let addthree = add 3;;

* addthree 4;; (* evaluates to 7 *)

CMSC 330 - Fall 2020 13

Currying is Standard In OCaml

» Pretty much all functions are curried
* Like the standard library map, fold, etc.

e See /usr/local/ocaml/lib/ocaml on Grace

> In particular, look at the file list.ml for standard list functions
» Access these functions using List.<fn name>

» E.g., List.hd, List.length, List.map

» OCaml works hard to make currying efficient

e Because otherwise it would do a lot of useless allocation and
destruction of closures

* What are those, you ask? Let’s see ...

CMSC 330 - Fall 2020

14

Closure

CMSC 330 - Fall 2020

18

Java Example

public class Test{
public void doSomething(){
int a = 10; //must be final
Runnable runnable = new Runnable(){ Needed later,
public void run(){ — makes copy of a
int b = a + 1;
System.out.println(b);

}
¥
(new Thread(runnable)).start(); //runs later
//a = 100; //not allowed

}
public static void main(String[] args){

Test t = new Test();
t.doSomething();

}

}/ a=10 is removed from the stack here
CMSC 330 - Fall 2020 19

OCaml Example

let foo x =
let bar y = x + y 1in
bar

foo 10 = ?
(funy -> x +y) ?
Where is x?

CMSC 330 - Fall 2020

20

Another Example

let x =1 in

let f = fun y -> x in
let x = 2 in

f 0

What does this expression should evaluate to?
A. 1
B. 2

CMSC 330 - Fall 2020

21

Another Example

let x =1 in

let f = fun y -> x in
let x = 2 in

f 0

What does this expression should evaluate to?
A. 1
B. 2

CMSC 330 - Fall 2020

22

Scope

» Dynamic scope

* The body of a function is evaluated in the current dynamic
environment at the time the function is called, not the old

dynamic environment that existed at the time the function was
defined.

» Lexical scope

* The body of a function is evaluated in the old dynamic
environment that existed at the time the function was defined,
not the current environment when the function is called.

CMSC 330 - Fall 2020

23

Closure

let foo x =
let bar y = x + y in
bar ;;

foo 3 Closure

’//’ N\
fun y ->
X +y
Function Environment

CMSC 330 - Fall 2020

let x = 1 in

let f = fun y -> x 1in
let x = 2 in

f 0

Closure

/ 1\
¥

fun y ->x \

Function Environment

24

Closures Implement Static Scoping

» An environment is a mapping from variable names to
values

e Just like a stack frame

» A closure is a pair (f, e) consisting of function code f and
an environment e

» When you invoke a closure, f is evaluated using e to look
up variable bindings

CMSC 330 - Fall 2020 25

Example — Closure 1

let add x = (fun y -> x + y)

(add 3) 4 . <cl>4 L3+4 7

Y \é Closure

Function —> fu:z;> ﬁ a <— Environment

CMSC 330 - Fall 2020

Example — Closure 2

let mult sum (x, y)
let z = x + y in
fun w > w * z

(mult_sum (3, 4)) 5

CMSC 330 - Fall 2020

—<cl>5

AN

/
4

fun w ->
w * z

s

—5*7

N\

27

Quiz 3: What is x?

A.10
B.1
C. 15

let
let
let
let
let
let

X OHhOoO D

[|

D. Error - variable name conflicts

CMSC 330 - Fall 2020

28

Quiz 3: What is x?

A.10
B.1
C. 15

let
let
let
let
let
let

X OHhOoO D

[|

D. Error - variable name conflicts

CMSC 330 - Fall 2020

29

Quiz 4: What is z?

let £ x = fun y -> x - y in
let g = f 2 in
let x = 3 in
let z = g 4 in
zZ;;
A.7
B. -2
C. -1
D. Type Error — insufficient arguments

CMSC 330 - Fall 2020

30

Quiz 4: What is z?

let £ x = fun y -> x - y in
let g = f 2 in
let x = 3 in
let z = g 4 in
zZ;;
A.7
B. -2
C. -1
D. Type Error — insufficient arguments

CMSC 330 - Fall 2020

31

Quiz 5: What does this evaluate to?

let £ x = x+1 in
let g = £ in
g (fun i -> i+1) 1

A. Type Error
B.1

C. 2
D. 3

CMSC 330 - Fall 2020

Quiz 5: What does this evaluate to?

let £ x = x+1 in
let g = £ in
(g (fun 1 -> i+1)) 1

A. Type Error — Too many arguments passed
to g (application is left associative)

.1

O QO W

. 2
. 3

CMSC 330 - Fall 2020

Higher-Order Functions in C

» C supports function pointers

typedef int (*int func) (int);
void app(int func £, int *a, int n) ({
for (int 1 = 0; 1 < n; i++)
af[i] = f(a[i]);
}

int add one(int x) { return x + 1; }

int main() {
int a[] = {5, 6, 7};
app (add one, a, 3);

}

CMSC 330 - Fall 2020

Higher-Order Functions in C (cont.)

» C does not support closures
* Since no nested functions allowed

* Unbound symbols always in global scope

CMSC 330 - Fall 2020

int y = 1;

void app(int(*f) (int), n) {
return f£(n);

}

int add y(int x) {
return x + y;

}

int main() {
app (add_y, 2);

}

35

Higher-Order Functions in C (cont.)

» Cannot access non-local variables in C
» OCaml code

let add x y = x + vy

» Equivalent code in C is illegal

int (* add(int x)) (int) {
return add y;

}
int add y(int y) {

return x + y; /* error: x undefined */

}

CMSC 330 - Fall 2020

Higher-Order Functions in C (cont.)

» OCaml code
let add x y = x + vy

» Works if C supports nested functions
* Not in ISO C, but in gcc; but not allowed to return them

int (* add(int x)) (int) {
int add y(int y) {
return x + y;

}
return add y; }

* Does not allocate closure, so x popped from stack and
add_y will get garbage (potentially) when called

CMSC 330 - Fall 2020

37

Java 8 Supports Lambda Expressions

» Ocaml’s
fun (a, b) -> a + b

» Is like the following in Java 8

(a, b) > a + b

» Java 8 supports closures, and variations on this syntax

CMSC 330 - Fall 2020

38

Java 8 Example

public class Calculator {
interface IntegerMath { int operation(int a, int b); }
public int operateBinary(int a, int b, IntegerMath op) {
return op.operation(a, b);
}
public static void main(String... args) {
Calculator myApp = new Calculator();
IntegerMath addition = (a, b) -> a + b;
IntegerMath subtraction = (a, b) -> a - b;
System.out.printin("40 + 2 =" +
myApp.operateBinary(40, 2, addition));
System.out.printin("20 - 10 =" +
myApp.operateBinary(20, 10, subtraction));

-

}

CMSC 330 - Fall 2020

Lambda
expressions

39

