
CMSC 330: Organization of Programming
Languages

Closures
(Implementing Higher Order Functions)

1CMSC 330 - Fall 2020

2

Returning Functions as Results
In OCaml you can pass functions as arguments
• to map, fold, etc.

and you can return functions as results
let pick_fn n =
let plus_three x = x + 3 in
let plus_four x = x + 4 in
if n > 0 then plus_three else plus_four

val pick_fn : int -> (int->int) = <fun>

Here, pick_fn takes an int argument, and returns a
function # let g = pick_fn 2;;

val g : int -> int = <fun>
g 4;; (* evaluates to 7 *)

CMSC 330 - Fall 2020

3

Consider a rewriting of the prior code (above)
let pick_fn n =
if n > 0 then (fun x->x+3) else (fun x->x+4)

Here’s another version

let pick_fn n =
(fun x -> if n > 0 then x+3 else x+4)

… the shorthand for which is just
let pick_fn n x =
if n > 0 then x+3 else x+4 I.e., a multi-argument

function!

Multi-argument Functions

CMSC 330 - Fall 2020

4

Currying

We just saw a way for a function to take multiple
arguments!
• I.e., no separate concept of multi-argument functions – can

encode one as a function that takes a single argument and
returns a function that takes the rest

This encoding is called currying the function
• Named after the logician Haskell B. Curry
• But Schönfinkel and Frege discovered it

Ø So maybe it should be called Schönfinkelizing or Fregging

CMSC 330 - Fall 2020

5

Curried Functions In OCaml

OCaml syntax defaults to currying. E.g.,

• is identical to all of the following:

Thus:
• add has type int -> (int -> int)

• add 3 has type int -> int
Ø add 3 is a function that adds 3 to its argument

• (add 3) 4 = 7

This works for any number of arguments

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

CMSC 330 - Fall 2020

7

Syntax Conventions for Currying

Because currying is so common, OCaml uses the
following conventions:
• -> associates from the right

Ø Thus int -> int -> int is the same as
Ø int -> (int -> int)

• function application associates from the left
Ø Thus add 3 4 is the same as
Ø (add 3) 4

CMSC 330 - Fall 2020

A. let f b = fun a -> a / b;;
B. let f = fun a | b -> a / b;;
C. let f (a, b) = a / b;;
D. let f = fun a -> (fun b -> a / b);;

8

let f a b = a / b;;

Quiz 1: Which f definition is equivalent?

CMSC 330 - Fall 2020

A. let f b = fun a -> a / b;;
B. let f = fun a | b -> a / b;;
C. let f (a, b) = a / b;;
D. let f = fun a -> (fun b -> a / b);;

9

let f a b = a / b;;

Quiz 1: Which f definition is equivalent?

CMSC 330 - Fall 2020

Quiz 2: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Recursive functions

10CMSC 330 - Fall 2020

Quiz 2: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Recursive functions

11CMSC 330 - Fall 2020

Multiple Arguments, Partial Application

Another way you could encode support for multiple
arguments is using tuples
• let f (a,b) = a / b (* int*int -> int *)
• let f a b = a / b (* int-> int-> int *)

Is there a benefit to using currying instead?
• Supports partial application – useful when you want to

provide some arguments now, the rest later
• let add a b = a + b;;
• let addthree = add 3;;
• addthree 4;; (* evaluates to 7 *)

13CMSC 330 - Fall 2020

14

Currying is Standard In OCaml

Pretty much all functions are curried
• Like the standard library map, fold, etc.
• See /usr/local/ocaml/lib/ocaml on Grace

Ø In particular, look at the file list.ml for standard list functions
Ø Access these functions using List.<fn name>
Ø E.g., List.hd, List.length, List.map

OCaml works hard to make currying efficient
• Because otherwise it would do a lot of useless allocation and

destruction of closures
• What are those, you ask? Let’s see …

CMSC 330 - Fall 2020

Closure

18CMSC 330 - Fall 2020

Java Example

CMSC 330 - Fall 2020 19

public class Test{
public void doSomething(){

int a = 10; //must be final
Runnable runnable = new Runnable(){

public void run(){
int b = a + 1;
System.out.println(b);

}
};
(new Thread(runnable)).start(); //runs later
//a = 100; //not allowed

}
public static void main(String[] args){

Test t = new Test();
t.doSomething();

}
}// a=10 is removed from the stack here

Needed later,
makes copy of a

OCaml Example

CMSC 330 - Fall 2020 20

let foo x =
let bar y = x + y in

bar
;;

foo 10 = ?

(fun y -> x + y) ?

Where is x?

Another Example

CMSC 330 - Fall 2020 21

let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0

A. 1
B. 2

What does this expression should evaluate to?

Another Example

CMSC 330 - Fall 2020 22

let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0

A. 1
B. 2

What does this expression should evaluate to?

Scope

Dynamic scope
• The body of a function is evaluated in the current dynamic

environment at the time the function is called, not the old
dynamic environment that existed at the time the function was
defined.

Lexical scope
• The body of a function is evaluated in the old dynamic

environment that existed at the time the function was defined,
not the current environment when the function is called.

CMSC 330 - Fall 2020 23

Closure

CMSC 330 - Fall 2020 24

let foo x =
let bar y = x + y in

bar ;;

let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0

Function Environment

Closurefoo 3 Closure

Function Environment

25

Closures Implement Static Scoping

An environment is a mapping from variable names to
values
• Just like a stack frame

A closure is a pair (f, e) consisting of function code f and
an environment e

When you invoke a closure, f is evaluated using e to look
up variable bindings

CMSC 330 - Fall 2020

26

Example – Closure 1

let add x = (fun y -> x + y)

(add 3) 4 → <cl> 4 → 3 + 4 → 7

Function Environment

Closure

CMSC 330 - Fall 2020

27

Example – Closure 2

let mult_sum (x, y) =
let z = x + y in
fun w -> w * z

(mult_sum (3, 4)) 5 → <cl> 5 → 5 * 7 → 35

CMSC 330 - Fall 2020

A. 10
B. 1

C. 15

D. Error - variable name conflicts

28

let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

CMSC 330 - Fall 2020

A. 10
B. 1

C. 15

D. Error - variable name conflicts

29

let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

CMSC 330 - Fall 2020

A. 7
B. -2

C. -1

D. Type Error – insufficient arguments

30

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

Quiz 4: What is z?

CMSC 330 - Fall 2020

A. 7
B. -2

C. -1

D. Type Error – insufficient arguments

31

Quiz 4: What is z?

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

CMSC 330 - Fall 2020

32

let f x = x+1 in
let g = f in
g (fun i -> i+1) 1

Quiz 5: What does this evaluate to?

A. Type Error
B. 1

C. 2
D. 3

CMSC 330 - Fall 2020

A. Type Error – Too many arguments passed
to g (application is left associative)

B. 1
C. 2
D. 3

33

let f x = x+1 in
let g = f in
(g (fun i -> i+1)) 1

Quiz 5: What does this evaluate to?

CMSC 330 - Fall 2020

34

Higher-Order Functions in C

C supports function pointers

typedef int (*int_func)(int);
void app(int_func f, int *a, int n) {
for (int i = 0; i < n; i++)
a[i] = f(a[i]);

}
int add_one(int x) { return x + 1; }
int main() {
int a[] = {5, 6, 7};
app(add_one, a, 3);

}

CMSC 330 - Fall 2020

35

Higher-Order Functions in C (cont.)

C does not support closures
• Since no nested functions allowed
• Unbound symbols always in global scope

int y = 1;
void app(int(*f)(int), n) {
return f(n);

}
int add_y(int x) {
return x + y;

}
int main() {
app(add_y, 2);

}
CMSC 330 - Fall 2020

36

Higher-Order Functions in C (cont.)

Cannot access non-local variables in C
OCaml code

Equivalent code in C is illegal

let add x y = x + y

int (* add(int x))(int) {
return add_y;

}
int add_y(int y) {
return x + y; /* error: x undefined */

}

CMSC 330 - Fall 2020

37

Higher-Order Functions in C (cont.)

OCaml code

Works if C supports nested functions
• Not in ISO C, but in gcc; but not allowed to return them

• Does not allocate closure, so x popped from stack and
add_y will get garbage (potentially) when called

int (* add(int x))(int) {
int add_y(int y) {
return x + y;

}
return add_y; }

let add x y = x + y

CMSC 330 - Fall 2020

Java 8 Supports Lambda Expressions

Ocaml’s

Is like the following in Java 8

Java 8 supports closures, and variations on this syntax

38

(a, b) -> a + b

fun (a, b) -> a + b

CMSC 330 - Fall 2020

Java 8 Example
public class Calculator {

interface IntegerMath { int operation(int a, int b); }
public int operateBinary(int a, int b, IntegerMath op) {

return op.operation(a, b);
}
public static void main(String... args) {

Calculator myApp = new Calculator();
IntegerMath addition = (a, b) -> a + b;
IntegerMath subtraction = (a, b) -> a - b;
System.out.println("40 + 2 = " +

myApp.operateBinary(40, 2, addition));
System.out.println("20 - 10 = " +

myApp.operateBinary(20, 10, subtraction));
}

}
39

Lambda
expressions

CMSC 330 - Fall 2020

