CMSC 330: Organization of Programming Languages

Closures
(Implementing Higher Order Functions)

Returning Functions as Results

- In OCaml you can pass functions as arguments
 - to map, fold, etc.
- and you can return functions as results

```
# let pick_fn n =
  let plus_three x = x + 3 in
  let plus_four x = x + 4 in
  if n > 0 then plus_three else plus_four
val pick_fn : int -> (int->int) = <fun>
```

Here, pick_fn takes an int argument, and returns a
function # let g = pick fn 2;;

```
val g : int -> int = <fun>
# g 4;; (* evaluates to 7 *)
```

Multi-argument Functions

Consider a rewriting of the prior code (above)

```
let pick_fn n =
  if n > 0 then (fun x->x+3) else (fun x->x+4)
```

Here's another version

```
let pick_fn n =
  (fun x -> if n > 0 then x+3 else x+4)
```

... the shorthand for which is just

```
let pick_fn n x =

if n > 0 then x+3 else x+4

l.e., 6
```

I.e., a multi-argument function!

Currying

- We just saw a way for a function to take multiple arguments!
 - I.e., no separate concept of multi-argument functions can encode one as a function that takes a single argument and returns a function that takes the rest
- This encoding is called currying the function
 - Named after the logician Haskell B. Curry
 - But Schönfinkel and Frege discovered it
 - So maybe it should be called Schönfinkelizing or Fregging

Curried Functions In OCaml

OCaml syntax defaults to currying. E.g.,

```
let add x y = x + y
```

is identical to all of the following:

```
let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)
```

- ▶ Thus:
 - add has type int -> (int -> int)
 - add 3 has type int -> int
 add 3 is a function that adds 3 to its argument
 - (add 3) 4 = 7
- This works for any number of arguments

Syntax Conventions for Currying

- Because currying is so common, OCaml uses the following conventions:
 - -> associates from the right
 - > Thus int -> int -> int is the same as
 - > int -> (int -> int)
 - function application associates from the left
 - > Thus add 3 4 is the same as
 - > (add 3) 4

Quiz 1: Which f definition is equivalent?

```
let f a b = a / b;;
```

```
A. let f b = fun a -> a / b;;
B. let f = fun a | b -> a / b;;
C. let f (a, b) = a / b;;
D. let f = fun a -> (fun b -> a / b);;
```

Quiz 1: Which f definition is equivalent?

```
let f a b = a / b;;

A. let f b = fun a -> a / b;;

B. let f = fun a | b -> a / b;;

C. let f (a, b) = a / b;;

D. let f = fun a -> (fun b -> a / b);;
```

Quiz 2: What is enabled by currying?

- A. Passing functions as arguments
- B. Passing only a portion of the expected arguments
- C. Naming arguments
- D. Recursive functions

Quiz 2: What is enabled by currying?

- A. Passing functions as arguments
- B. Passing only a portion of the expected arguments
- C. Naming arguments
- D. Recursive functions

Multiple Arguments, Partial Application

 Another way you could encode support for multiple arguments is using tuples

```
let f (a,b) = a / b (* int*int -> int *)
let f a b = a / b (* int-> int-> int *)
```

- Is there a benefit to using currying instead?
 - Supports partial application useful when you want to provide some arguments now, the rest later

```
let add a b = a + b;;
let addthree = add 3;;
addthree 4;; (* evaluates to 7 *)
```

Currying is Standard In OCaml

- Pretty much all functions are curried
 - Like the standard library map, fold, etc.
 - See /usr/local/ocaml/lib/ocaml on Grace
 - > In particular, look at the file list.ml for standard list functions
 - > Access these functions using List.<fn name>
 - > E.g., List.hd, List.length, List.map
- OCaml works hard to make currying efficient
 - Because otherwise it would do a lot of useless allocation and destruction of closures
 - What are those, you ask? Let's see ...

Closure

Java Example

```
public class Test{
         public void doSomething(){
                  int a = 10; //must be final
                  Runnable runnable = new Runnable(){______ Needed later,
                      public void run(){
                                                                makes copy of a
                                int b = a^{\dagger} + 1;
                                System.out.println(b);
                  (new Thread(runnable)).start(); //runs later
                  //a = 100; //not allowed
         public static void main(String[] args){
                  Test t = new Test();
                  t.doSomething();
}// a=10 is removed from the stack here
```

OCaml Example

```
let foo x =
  let bar y = x + y in
bar
;;
              foo 10 = ?
              (fun y \rightarrow x + y)?
              Where is x?
```

Another Example

```
let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0
```

What does this expression should evaluate to?

A. 1

B. 2

Another Example

```
let x = 1 in
let f = fun y -> x in
let x = 2 in
f 0
```

What does this expression should evaluate to?

A. 1

B. 2

Scope

Dynamic scope

 The body of a function is evaluated in the current dynamic environment at the time the function is called, not the old dynamic environment that existed at the time the function was defined.

Lexical scope

• The body of a function is evaluated in the old dynamic environment that existed at the time the function was **defined**, not the current environment when the function is called.

Closure

```
let foo x =
  let bar y = x + y in
bar ;;
```


Closure

Function Environment

Closures Implement Static Scoping

- An environment is a mapping from variable names to values
 - Just like a stack frame

 A closure is a pair (f, e) consisting of function code f and an environment e

When you invoke a closure, f is evaluated using e to look up variable bindings

Example – Closure 1

let add
$$x = (fun y \rightarrow x + y)$$

Example – Closure 2

```
let mult_sum (x, y) =
  let z = x + y in
  fun w -> w * z
```


Quiz 3: What is x?

```
let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;
```

- A. 10
- B. 1
- C. 15
- D. Error variable name conflicts

Quiz 3: What is x?

```
let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;
```

- A. 10
- B. 1
- C. 15
- D. Error variable name conflicts

Quiz 4: What is z?

```
let f x = fun y -> x - y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;
```

30

- A. 7
- B. -2
- C. -1
- D. Type Error insufficient arguments

Quiz 4: What is z?

```
let f x = fun y -> x - y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;
```

- A. 7
- B.-2
- C.-1
- D. Type Error insufficient arguments

Quiz 5: What does this evaluate to?

```
let f x = x+1 in
let g = f in
g (fun i -> i+1) 1
```

A. Type Error

B. 1

C. 2

D. 3

Quiz 5: What does this evaluate to?

```
let f x = x+1 in
let g = f in
(g (fun i -> i+1)) 1
```

- **A. Type Error** Too many arguments passed to g (application is *left associative*)
- B. 1
- C. 2
- D. 3

Higher-Order Functions in C

C supports function pointers

```
typedef int (*int func)(int);
void app(int func f, int *a, int n) {
  for (int i = 0; i < n; i++)
    a[i] = f(a[i]);
int add one(int x) { return x + 1; }
int main() {
  int a[] = \{5, 6, 7\};
  app(add one, a, 3);
```

Higher-Order Functions in C (cont.)

- C does not support closures
 - Since no nested functions allowed
 - Unbound symbols always in global scope

```
int y = 1;
void app(int(*f)(int), n) {
  return f(n);
int add_y(int x) {
  return x + y;
int main()
  app(add_y, 2);
```

Higher-Order Functions in C (cont.)

- Cannot access non-local variables in C
- OCaml code

```
let add x y = x + y
```

Equivalent code in C is illegal

```
int (* add(int x))(int) {
  return add_y;
}
int add_y(int y) {
  return x + y; /* error: x undefined */
}
```

Higher-Order Functions in C (cont.)

OCaml code

```
let add x y = x + y
```

- Works if C supports nested functions
 - Not in ISO C, but in gcc; but not allowed to return them

```
int (* add(int x))(int) {
  int add_y(int y) {
    return x + y;
  }
  return add_y; }
```

 Does not allocate closure, so x popped from stack and add_y will get garbage (potentially) when called

Java 8 Supports Lambda Expressions

Ocaml's

fun
$$(a, b) \rightarrow a + b$$

Is like the following in Java 8

$$(a, b) -> a + b$$

Java 8 supports closures, and variations on this syntax

Java 8 Example

```
public class Calculator {
  interface IntegerMath { int operation(int a, int b); }
  public int operateBinary(int a, int b, IntegerMath op) {
     return op.operation(a, b);
  public static void main(String... args) {
     Calculator myApp = new Calculator();
                                                                   Lambda
     IntegerMath addition = (a, b) \rightarrow a + b;
     IntegerMath subtraction = (a, b) \rightarrow a - b;
                                                                   expressions
     System.out.println("40 + 2 = " +
       myApp.operateBinary(40, 2, addition));
     System.out.println("20 - 10 = " +
       myApp.operateBinary(20, 10, subtraction));
```