CMSC 330: Organization of Programming
Languages

Property-Based Random Testing

CMSC 330 - Fall 2020

Testing is Hard

. This happened in CMSC330 final exam

. Question: write a function sort ('a list -> 'a list)
that receives an int list and returns a sorted list

. Student Answer:

let sort 1st = [1;2;3]

CMSC 330 — Fall 2020

Testing is Hard

. Question: write a function sort (‘a list -> 'a list) that
receives an int list and returns a sorted list

. Student Answer:

let sort 1st = [1;2;3] ;;
(* this indeed returns a sorted list. This

student received full credit for the
question™)

CMSC 330 — Fall 2020

Testing is Hard

Question: write a function sort ('a list -> 'a list) that
receives an int list the returns sorted list

Changed to:

Question: write a function sort ('a list -> 'a list) that receives an int list,
sorts the list in non-descending order, and returns this sorted list.
Also:

1. Returned list must be a permutation of the input. Permutation is
defined as

2. You can add recursive helper functions
3. You can use fold and map

CMSC 330 — Fall 2020

Testing is Hard

By the time you finish reading the instructions,

exam time is up.

/—\

CMSC 330 — Fall 2020

How do Test a Program?

. A code tester walks into a bar
* Orders a beer
* Orders ten beers
* Orders 2.15 billion beers
* Orders -1 beer
* Orders a nothing
* Orders a lizard
* Tries to leave without paying

CMSC 330 — Fall 2020

What is in the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer

CMSC 330 — Fall 2020

What is in the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer

. NO. We don’t do that

CMSC 330 — Fall 2020

L et's test reverse...

Not tail recursive

let rec reverse 1
match 1 with
[1 -> []
| h::t -> reverse t @ h

CMSC 330 — Fall 2020

L et's test reverse...

Unit tests...

let test reverse =
reverse [1;2;3] = [3;2;1]

/BN

Function Sample Expected
under test argument result

CMSC 330 — Fall 2020

10

Unit Testing

. Hard Coded Tests

. Difficult to write good unit tests
. Time Consuming

. Have to Write many tests

. Repeated Tests

CMSC 330 — Fall 2020

11

Properties

. Instead of hard coded unit tests, we should test
the properties.

. Determine whether an integer is even

let is even n = n mod 2 = 0

CMSC 330 — Fall 2020

12

QCheck: Property-Based Testing for OCaml,

. QCheck tests are described by
* A generator: generates random input
* A Property: Boolean valued function

true
Generate Property Wfalse
Input (input)?

CMSC 330 — Fall 2020

AR

13

Let’s test properties of reverse...

Write a property that should hold for all inputs:

Random
arguments

)

let prop reverse 1
reverse (reverse 1) =1

¢

Reverse of the
reversed list is itself

CMSC 330 — Fall 2020

14

_et’s test properties of reverse...

1

let prop reverse 1 = reverse (reverse 1)

open QCheck; ; Generate an integer

and a list
let test = J//’——

QCheck.Test.make ~count:1000

~name: "reverse test” QCheck. (list small int)

(fun x-> prop reverse x);; 4———...and test the property

CMSC 330 — Fall 2020 15

Let’s test properties of reverse...

let prop reverse 1 = reverse (reverse 1) =1

open Qcheck; ;
let test = QCheck.Test.make ~count:1000 ~name:”reverse test”

QCheck. (1list small int) (fun x-> prop reverse Xx);;

Run the test

QCheck.Test.check exn test;;
- : unit = ()

CMSC 330 — Fall 2020

16

Buggy Reverse

let reverse 1 =1 (* returns the same list *)

The property did not catch the bug!

. - o
1111L

let prop reverse 1 =
reverse (reverse 1) =1

011

A simple unit test would catch the bug

let test reverse = reverse [1;2;3]

CMSC 330 — Fall 2020

0z Gz
Gl

[3;2;1]

ity
10 1 00 it }lio 00’
ﬁ%OpJ%@%q
© g 0 | Q]_ Oy
b

17

Reverse Property another take

let prop reverse2 1l x 12 =
rev (11 @ [x] @ 12) = rev 12 @ [x] @ rev 11

rev [1;2]Q@[3]@[4;5] = rev [4;5] @ [3] @ rev [1;2]

let test = QCheck.Test.make ~count:1000
~name: "reverse test2"
(triple (list small int) small int (list small int))
(fun(11l,x,12)-> prop reverse2 11 x 12)1

:(int list * int * int list) arbitrary
Generates 11,x,12

QCheck runner.run tests [test];;

success (ran 1 tests)

- : int =0

CMSC 330 — Spring 2021 20

Lesson learned: Garbage in Garbage out

On two occasions | have been asked, —“Pray,Mr. Babbage,
if you put into the machine wrongfigures, will the right
answers come out?” In one case a member of the Upper,
and in the other a member of the Lower, House put this
guestion. | am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

— Charles Babbage, 1864

Bad generators and properties produce bad results.

CMSC 330 — Fall 2020 22

Another example: Let’s test delete...

let rec delete x 1 = match 1 with
[1 -> [1
| (y::ys) -> if x == y then ys
else y:: (delete x ys)

Unit Test

let test delete =
delete 2 [1;2;3] = [1;3]

CMSC 330 — Fall 2020 23

Let’s test properties of delete...

Write a property that should hold for all inputs:

Random
arguments

)

let prop delete x 1 =
not (member x (delete x 1))

&

X should not be a
member of the result

CMSC 330 — Fall 2020

24

Let’s test properties of delete...

let prop delete x 1 =
not (member x (delete x 1))

let test =QCheck.Test.make ~count:1000

~name: "reverse test"”

(QCheck.pair QCheck.small int QCheck. (list small int))
(fun(x, 1)-> prop delete x 1

QCheck_runner.run_tests [test];;

CMSC 330 — Fall 2020 25

Let’s test properties of delete...

--- Failure --------- - - - - - ———— - -

Test reverse test failed (11 shrink steps):
(0, [0; O])

failure (1 tests failed, 0 tests errored, ran 1 tests)
- : int =1

CMSC 330 — Fall 2020 26

Let’s test properties of delete...

let rec delete x 1 = match 1 with No recursive
[1 -> [] o
| (y::ys) -> if x == y then ys‘(/’Ca :
else y:: (delete x ys)

let prop delete x 1 =
not (member x (delete x 1))

CMSC 330 — Fall 2020 27

Properties: is_sorted

. Whether a list is sorted in non-decreasing order

let rec is sorted 1lst=
match lst with
[] -> true
| [h] -> true
| hl::(h2::t as t2) -> hl <= h2 && is sorted t2

CMSC 330 — Fall 2020

28

Property-Based Random Testing

Generator
* Produces random data to test the property

Shrinker

* Minimizes counterexamples
Printer

CMSC 330 — Fall 2020

29

Generators

Abstract type of generators:
* type ‘a gen

Sampling generators:
* val generate : ‘a gen -> ‘a

> Gen.generatel Gen.small int
7

> Gen.generate ~n:10 Gen.small int
int list =[6,;8,;78;87;9;9,;6,;2;3,;27]

CMSC 330 — Fall 2020

30

Generators

Generate 5 int lists
let t = Gen.generate ~n:5 (Gen.list Gen.small int);;

t : int list list =[[4;2;7;8;.]1;..;[0,;2,;97]]

Get the length of each list:
List.map (fun x ->List.length x) t;;

Generate two string lists

let s = Gen.generate ~n:2 (Gen.list Gen.string);;

CMSC 330 — Fall 2020

31

Generators

Composite generators:
val always : 'a -> 'a arbitrary

Composite generators:
val pair : 'a arbitrary -> 'b arbitrary ->

('a * 'b) arbitrary

CMSC 330 — Fall 2020

32

Generators Examples

(* Always generate 42 *)

generatel (QCheck.always 42)
42

(* generate a (int * bool) pair list *)

generatel (Gen.list ((pair small int bool) .gen));;

[(4,true); (0,false); (7, false)]

CMSC 330 — Fall 2020

33

Generators

Combining generators:
val frequenc: (int * ‘a) list ->‘'a 'a arbitrary

Generate 80% small int and 20% int
Gen.generate ~n:10
(frequency [(1,int); (4,small int)]) .gen;;

- : int list =

[3; 4; -1745206713219709656; 9; 8;
-4194515886393930669; 78; 1; 7; 35]

CMSC 330 — Fall 2020

34

Generators

Combining generators:
val frequency: (int * ‘a) list ->‘a 'a arbitrary

Generate 75% ’a’ and 25% ’b’

let g = (frequencyl [(3,'a');(1,'b"')]) .gen;;
Gen.generate ~n:8 g;;

- : char list =

[lbl; lal; lal; lbl; lbl; lal; lal; laV]

CMSC 330 — Fall 2020 35

Shrinking

Our example without shrinking...

--- Failure --------—-—— - ————————

Test anon _test 1 failed (0 shrink steps):

(7, [0; 4; 3; 7; 0; 2; w 1; 1; 2])

...and with: vWhere's the bug?

--- Failure ---------- - - - - ———-—————————————

Test anon _test 1 failed (8 shrink steps):

(2, [2; 2])

CMSC 330 — Fall 2020

Shrinking

How do we go from this...

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...to this?
(2, [2; 2]) List of "smaller” inputs
\/
* Given a shrinking function £ ::‘a -> ‘a list
* And a counterexample x :: ‘a

Try all elements of (£ x) to find another failing input...
Repeat until a minimal one is found.

CMSC 330 — Fall 2020

38

Shrinkers

A shrinker attempts to cut a counterexample down
to something more comprehensible for humans

A QCheck shrinker is a function from a
counterexample to an iterator of simpler
values:

'a Shrink.t = 'a -> 'a QCheck.Iter.t

CMSC 330 — Fall 2020

39

Shrinkers and iterators in QCheck

Given a counterexample, QCheck calls the iterator
to find a simpler value, that is still a
counterexample

Some input

Input g Iter.find None
» Shirnk (fun i -> not (Prop i)) -

. Print
counterexample
After a successful shrink, the shrinker is called again.

CMSC 330 — Fall 2020 40

Shrinkers

QCheck’s Shrink contains a number of builtin shrinkers:

Shrink.nil performs no shrinking
Shrink.int for reducing integers
Shrink.char for reducing characters
Shrink.string for reducing strings
Shrink.list for reducing lists
Shrink.pair for reducing pairs
Shrink.triple forreducing triples

CMSC 330 — Fall 2020

Arbitraries — Putting it all together

Represents an "arbitrary" value of type
Combination type

* type ‘a arbitrary
Combines all three components

* Printer
e Shrinker
e (Generator

CMSC 330 — Fall 2020

44

Arbitraries

An arbitrary integer:

make Gen.int
- : 1nt arbitrary =

CMSC 330 — Fall 2020

45

Case Study: Binary Search Trees

type tree =
| Leaf

| Node of int * int * tree * tree

val nil :: tree

val insert :: int -> int -> tree -> tree
val delete :: int -> tree -> tree

val find :: int -> tree -> int option

Val valid :: tree -> bool

CMSC 330 — Fall 2020 46

Binary Search Trees - Generation

type tree =
| Leaf
| Node of int * int * tree * tree

let rec insert (x,y) t =
match t with
| Leaf -> Node (x,y, Leaf, Leaf)
| Node (k,v, 1, r) ->
if x = k then Node (k,y,1,r)
else if x < k then Node (k,v, insert (x,y) 1, r)
else Node (k,v, 1, insert (x,y) r)

CMSC 330 — Fall 2020 47

Binary Search Trees - Generation

type tree =
| Leaf

| Node of int * int * tree * tree

let tree gen m =
match n with
| 0 -> Leaf
| m ->let lst =
Gen.generate ~n:m (Gen.pair Gen.nat Gen.nat) in
List.fold left (fun a (k,v) ->
insert (k,v) a) Leaf 1

CMSC 330 — Fall 2020 48

Binary Search Trees - Printing

let rec print tree = function
| Leaf -> "Leaf"
| Node (k,v,1,r) ->
“Node (" * (string of int k) *~ ™“,”
» (string of int v) ~ ",V
» (print tree 1) ~ ","
» (print_tree r)

CMSC 330 — Fall 2020

50

Validity Testing

Test whether operations preserve invariant
* let prop insert valid k v t =
. valid (insert k v t)
* let prop delete valid k t =
. valid (delete k t)

Test whether generation produces valid trees
° let prop gen valid t =
. valid t

CMSC 330 — Fall 2020

51

Postcondition Testing

What is the postcondition of find? How do we test

* After calling find... [this?
> If the key is present, the result should be a Some
> If the key is absent, the result should be None

By construction!
let prop find post present k v t =
find k (insert k v t) == Some v
let prop find post absent k t =
find k (delete k t) == None

CMSC 330 — Fall 2020 52

Metamorphic Testing

How does changing the input of insert change the
result?

O(n?)
. ideas
insert k’ v’ 7 ¢
Ct >
insert k v insert k v

<:ﬁ§t> insert k'’ v’><:iit>

CMSC 330 — Fall 2020

53

Metamorphic Testing

How does changing the input of insert change the

result?

let prop insert insert (k,v) (k' ,v) t =
insert k v (insert k’ v’ t)
— Is this reall
- - y
: y o, true?
insert k/’ v’ (insert k v t)

-—-—- Failure

Test anon _test 1 failed (5 shrink steps):

((0,0), (0,1), Lea® _ Lastinsertion
WITIS!

CMSC 330 — Fall 2020

54

Metamorphic Testing

How does changing the input of insert change the

result?
let prop insert insert (k,v) (k' ,v) t =

CMSC 330

insert k v (insert k’ v’ t)

if k == k’ then insert k v t else

insert k’ v’/ (insert k v t)

--- Failure ---------- - - - - ———- === ————————

Test anon_test 1 failed (5 shrink steps):

((9,0), (1,0), Leaf) — Order matters!

55

Metamorphic Testing

How does changing the input of insert change the
result?
let bst equiv tl t2 =

toList t1 == tolist t2

let prop insert insert (k,v) (k' ,v) t =
bst equiv
(insert k v (insert k’ v’ t))
(1if k == k’ then insert k v t

else insert k/ v/ (insert k v t))

CMSC 330 — Fall 2020

56

