CMSC 330: Organization of Programming
Languages

Reducing NFA to DFA and
DFAs Minimization

Reducing NFA to DFA

DFA < NFA

RE

Why NFA — DFA

» DFA is generally more efficient than NFA

a,b

NFA

Language: (alb)*ab

How to accept bab?

Why NFA — DFA

» DFA has the same expressive power as NFAs.

* Letlanguage L € 2*, and suppose L is accepted by NFA N = (2,
Q, qo, F, 0). There exists a DFA D= (Z, Q’, 9y, F’, &) that also
accepts L. (L(N) = L(D))

» NFAs are more flexible and easier to build. But it is not
more powerful than DFAs

NFA < DFA

How to Convert NFA to DFA

Subset Construction Algorithm

Input NFA (2, Q, qo, F,, 0)

Output DFA (Z, R, ry, Fy4, &)

Subset Construction Algorithm
Input NFA (%, Q, qo, F,,, 0) Output DFA (2, R, rg, Fy, &)

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R =R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

New Start State

—— Let ry = e-closure(d,qp), add itto R

While 3 an unmarked state r € R
Mark r
Foreacho e X
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked stater ¢ R
Mark r
——— Foreacho e X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 ‘ Ifee R
P " LetR =R U {e}
1 Letd’ =0o u{r, o, €}

LetFy={r|3s erwiths € F,}

{A,B,C} ‘ ‘

{A,B,C}

{B.C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X
Let E = move(d,r,0)
——— Let e = ¢-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked stater ¢ R
Mark r
Foreacho € X
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 Ife ¢ R
{A,B,C} . BC Let R=R u {e}

— Letd’ =8 u{r, o, e}
LetFy={r|3s erwiths € F,}

{A,B,C} {B,C}
{B,C}

> (oo
{A,B,C} > {B,C}
1
0 1
{A,B,C} {B,C}

{B.C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
— Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X M
Let E = move(d,r,0)
——— Let e = g-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
— Letd’ =8 u{r, o, e}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

—— While 3 an unmarked stater ¢ R

Mark r
Foreacho e X M
Let E = move(d,r,0)

Let e = e-closure(d,E)

Ife ¢ R

Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C} {B,C} {A,B,C}
1B,C}

0
1
0 1
{A,B,C} {B,C} {A,B,C}

{B.C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
—— Foreacho e X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked stater € R

Mark r

Foreacho e X /10

Let E = move(d,r,0)
——— Let e = ¢-closure(d,E)

0 0 Ife ¢ R
Let R=R u{e}

V Letd’ =0o u{r, o, €}

1 LetFy={r|3s erwiths e F,}
0 1
{A,B,C} {B,C} {A,B,C}
{B,C} {C}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R =R u{e}
— Letd’ =8 u{r, o, e}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
— Foreacho € X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X M
Let E = move(d,r,0)
——— Let e = g-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho e X M
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
— Letd’' =8 u{r, 0, e}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

—— While 3 an unmarked stater ¢ R

Mark r
Foreacho e X M
Let E = move(d,r,0)

Let e = e-closure(d,E)

Ife ¢ R

Let R =R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked stater € R

Mark r
—— Foreacho € X
Let E = move(d,r,0)
Let e = e-closure(d,E)

0 0 0 Ife ¢ R
Let R=R u{e}
' ' 1 Letd’ =0o u{r, o, €}

1 1 LetFy={r|3s erwiths e F,}

{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho € X //0
Let E = move(d,r,0)
——— Let e = g-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C} {C}

Let ry = e-closure(d,qy), add it to R
While 3 an unmarked stater ¢ R

Mark r
Foreacho € X /10
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ifee R
Let R =R u{e}
— lLetd'=8u{r 0, e}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
—> Foreachoc e X /11
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R=R u{e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C} {B,C} {A,B,C}
{B,C} {C} {B,C}
{C} {C}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho € X /11
Let E = move(d,r,0)
——— Let e = g-closure(d,E)
Ife ¢ R
Let R=R u {e}
Letd’ =0o u{r, o, €}
LetFy={r|3s erwiths e F,}

{A,B,C}

{B.C}

{C}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked state r € R
Mark r
Foreacho € X /11
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ife ¢ R
Let R =R u{e}
— Letd’' =8 u{r, 0, e}
LetFy={r|3s erwiths e F,}

Let ry = e-closure(d,qy), add it to R

While 3 an unmarked stater € R
Mark r

Foreacho € X /11
Let E = move(d,r,0)
Let e = e-closure(d,E)
Ifee R
Let R =R u{e}
Letd’ =0o u{r, o, €}
—— LetFy={r|3s erwiths e F,}

{A,B,C}

{A,B,C}

{B.C}

{B.C}

{C}

{C}

0 1
{ABC} |{B.C} {AB,C}
{B.C} {C} {B.C}
{C} {C} {C}
DFA 1 . 0 1

NFA — DFA Another Example

1
0

P

o

R

1

0

[

ql

NFA — DFA Another Example

NFA — DFA Another Example

NFA — DFA Another Example

NFA — DFA Another Example

Analyzing the Reduction

» Can reduce any NFA to a DFA using subset alg.

» How many states in the DFA?
e Each DFA state is a subset of the set of NFA states

* Given NFA with n states, DFA may have 2" states
» Since a set with n items may have 2" subsets

* Corollary
» Reducing a NFA with n states may be O(2")

NFA DFA

37

Recap: Matching a Regexp R

» Given R, construct NFA. Takes time O(R)

» Convert NFA to DFA. Takes time O(2/R)
* But usually not the worst case in practice
» Use DFA to accept/reject string s

* Assume we can compute 8(q,0) in constant time

* Then time to process s is O(|s|)
» Can’t get much faster!

» Constructing the DFA is a one-time cost
* But then processing strings is fast

Closing the Loop: Reducing DFA to RE

can
reduce

DFA < NFA

can transform can transform

RE

Reducing DFAs to REs

» General idea

* Remove states one by one, labeling transitions with regular
expressions

* When two states are left (start and final), the transition label is
the regular expression for the DFA

ablba @

40

DFA to RE example

Language over 2= {0,1} such that every string is a multiple of 3 in binary

1 New-Starting 0 ‘ 1 1
0 ‘ 1 0
& e 99
‘ € 1 0
1 0 New-Final State @

T 0+101 01)
@G) — OO

Starting State Final State

(0+1(0 1* 0)1)*

Minimizing DFAs

» Every regular language is recognizable by a unique
minimum-state DFA
* |gnoring the particular names of states

» In other words

* For every DFA, there is a unique DFA with minimum number
of states that accepts the same language

43

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

Minimizing DFA: Hopcroft Reduction

» Intuition

* Look to distinguish states from each other
> End up in different accept / non-accept state with identical input

» Algorithm
* Construct initial partition
» Accepting & non-accepting states

* lteratively split partitions (until partitions remain fixed)

> Split a partition if members in partition have transitions to different
partitions for same input

- Two states x, y belong in same partition if and only if for all symbols in 2
they transition to the same partition

* Update transitions & remove dead states

44

Splitting Partitions

» No need to split partition {S,T,U,V}
* All transitions on a lead to identical partition P2
* Even though transitions on a lead to different states

A ([=

Splitting Partitions (cont.)

» Need to split partition {S,T,U} into {S, T}, {U}
* Transitions on a from S, T lead to partition P2
* Transition on a from U lead to partition P3

46

Resplitting Partitions

» Need to reexamine partitions after splits
* Initially no need to split partition {S,T,U}

* After splitting partition {X,Y} into {X}, {Y} we need to split partition
{S,T,U} into {S,T}, {U}

st
“““
-
b

47

Minimizing DFA: Example 1

» DFA

» Initial partitions

» Split partition

48

Minimizing DFA: Example 1

P2 P1
» DFA [a N\)
a b
D@&/ ,
\ J A
» Initial partitions }@ :
* Accept {R}=P1
* Reject {S, T} =P2
» Split partition? — Not required, minimization done
* move(S,a)=T e P2 — move(S,b) =R e P1

* move(T,a)=T € P2 —move (T,b) =R € P1

Minimizing DFA: Example 2

50

Minimizing DFA: Example 2

» DFA ﬁ?a

Es=0N

o b P DFA
» Initial partitions already
* Accept {R}=P1 minimal
* Reject {S, T} =P2
» Split partition? — Yes, different partitions for B
* move(S,a) =T e P2 —move(S,b) =TeP2

* move(T,a) =TeP2 —move (T,b) =R e P1

51

Brzozowski's algorithm

1. Given a DFA, reverse all the edges, make the initial state
an accept state, and the accept states initial, to get an

NFA
2. NFA->DFA

3. Forthe new DFA, reverse the edges (and initial-accept
swap) get an NFA

4. NFA->DFA

Brzozowski's algorithm

ﬁ@ﬂﬁ\o
D@@ o0

I\/I|n|mum DFA

Complement of DFA

» Given a DFA accepting language L
* How can we create a DFA accepting its complement?

* Example DFA
» 2 ={a,b}

d

lo@ O

b

56

Complement of DFA

» Algorithm
* Add explicit transitions to a dead state
* Change every accepting state to a non-accepting state & every non-
accepting state to an accepting state
» Note this only works with DFAs
* Why not with NFAs?

57

Summary of Regular Expression Theory

» Finite automata
* DFA, NFA

» Equivalence of RE, NFA, DFA
 RE — NFA

> Concatenation, union, closure

* NFA — DFA

» g-closure & subset algorithm

» DFA

* Minimization, complementation

58

