Software Security
Building Security in

& ol T‘B
¢
@

@
s _ 0 \\\

/N » " |
\ CMSC330 Fall 2020

Security breaches TIX

TJX (2007) - 94 million records”®

Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records

Equifax (2017) — 148 millions consumers

Yahoo (2013) — 3 billion user accounts

™ b

Twitter (2018) — 330 million users _ Anthem.gig
First American Financial Corp (2019) — 885 million users
Anthem (2014) - Records of 80 million customers @

Target (2013) - 110 million records
Heartland (2008) - 160 million records

TARGET.

Heartland

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

2017 Equifax Data Breach

* 148 million consumers’ personal information stolen

» They collect every details of your personal life
. Your SSN, Credit Card Numbers, Late Payments...

* You did not sign up for it
* You cannot ask them to stop collecting your data

* You have to pay to credit freeze/unfreeze

Vulnerabilities: Security-relevant Defects

« The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

« Software defect (bug) or design flaw can
be exploited to effect an undesired RISK
behavior

Defects and
Vulnerabilities

* The use of software is growing
. So: more bugs and flaws

« Software is large (lines of code)
. Boeing 787: 14 million
- Chevy volt: 10 million
. Google: 2 billion
. Windows: 50 million
. Mac OS: 80 million
- F35 fighter Jet: 24 million

In this Lecture

» The basics of threat modeling.

« Two kinds of exploits: Buffer overflows and command
injection.

* Two kinds of defense: Type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

Considering Correctness

« All software is buggy, isn't it? Haven't we been
dealing with this for a long time?

A normal user never sees most bugs, or figures out
how to work around them

* Therefore, companies fix the most likely bugs, to
save money

Exploit the Bug

» Atypical interaction with a bug
results in a crash

* An attacker is not a normal user!
The attacker will actively attempt
to find defects, using unusual
interactions and features

« An attacker will work to exploit the
bug to do much worse, to achieve

his goals

yevich Andrienko Sergey Vladimirovich Detistov Pavel Valer

Ommit Computer Fraud cessing ut Authorizatior
:reial Advantage and| Private Findncial Gain; Damaging Computers| Through th
namands; Aggravated Identity Theft; Economic Espionage; Theft of Trade S ts

v D 3
; DONG SUN KAILIANG WEN XINYU
». "UglyGorilla" Aliases: Sun Kai Liang, Jack Sun Aliases: Wen Xin Yu, “WinXY!
“Win_XY”, Lao Wen

Exploitable Bugs

« Many kinds of exploits have been developed over
time, with technical names like

. Buffer overflow

. Use after free

. Command injection
. SQL injection

. Privilege escalation
. Cross-site scripting
. Path traversal

Buffer Overflow

A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

. A buffer overwrite occurs when the out-of-
bounds access is a write.

. A buffer overread occurs when the access is
a read.

10

Example: Out-of-Bounds Read/write in C
Output:

#include

void 1incr_arr(int *x, int len, int i) {
if (4 i len) {

C[4] = x[4] + 1; The value of z changed
incr_arr (x,len, 1+1); from 20 to 21. Why?

}
}

int y[10] = {1,1,1,1,1,1,1,1,1, }s

int z

int main(int argc, char *xargv) {
incr_arr(y,11,0);
printf(~ AR
return 0;

}

11

Example: Out-of-Bounds Read/write in C

#include

void incr_arr(int

}

if (
x[1]

_i

x[i]

X, int len, 1int 1) {

.
)

incr_arr(x,len,i

}

int y[10]
int z

)

{””””!};

len) {

)

int main(int argc, char
incr_arr(y,11,0);
printf(

return

}

-
)

yZ)

argv) {

Output:

« array y has length 10

* but the second argument of
incr_arr is 11, which is one
more than it should be.

* As a result, line 5 will be allowed
to read/write past the end of the
array.

buffer » overwrite

0 1 2 3 4 5 6 7 8 9 10

12

Example: Out-of-Bounds Read/write in OCaml

Consider the same program, written in OCaml

let rec incr_arr x i len =

if 1 >= 0 && i < len then
(x. (1) <= x.(1) + 1;
incr_arr x (i+1l) len)

oo
)

let y = Array.make 10 1;;
incr_arr y 0 (1 + Array.length y);;

Exception: Invalid_argument "index out of bounds".

« OCaml detects the attempt to write one past the end of the array
and signals by throwing an exception.

13

Exploiting a Vulnerability

#include <stdlib.h>
int main(int argc, char **argv) {
int len = 10;
if (argc == 2) len = atoi(argv[1]);

incr_arr(y,len,0);
printf("%d =? 20\n",2z);
return 0;

If an attacker can force the argument to be 11 (or
more), then he can trigger the bug.

14

What Can Exploitation Achieve?

« Buffer Overread: Heartbleed
. Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

. The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

15

What Can Exploitation Achieve?

o Buffer Overwrite: Morris Worm

Stack Higher Addresses
Code Return address 0 A
10: 1 Saved Frame Pointer fi
o Local variables f0 Stackframe fO
call f1
Arguments f1 v
»| Return address f1 A
L__| Saved Frame Pointer f1
Pointer to data
Data
- . Local Stackframe f1
> Injected Code
Valuel J | Variables
Buffer | .
Value2 fl
\

Lower addresses

16

What happened?

« For C/C++ programs
. A buffer with the password could be a local variable

* Therefore

. The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

. The overrun rewrites the return address to point into the buffer,
at the machine instructions

. When the call “returns” it executes the attacker’s code

Code Injection

 Attacker tricks an application to treat attacker-provided data as
code

 This feature appears in many other exploits too
. SQL injection treats data as database queries
. Cross-site scripting treats data as browser commands
. Command injection treats data as operating system commands

. Use-after-free (violating Temporal Safety)

. Etc.

18

Use After Free

#include <stdlib.h>
struct list {
int v;
struct list *next;
35
int main() {
struct list *p = malloc(sizeof(struct list));
p->v = 0;
p->next = 0;

free(p); // deallocates p

int *x = malloc(sizeof(int)*2); // reuses p's old memory
x[0] = 5; // overwrites p->v

x[1] = 5; // overwrites p->next

p = p—>next; // p is now bogus

p->v = 23 // CRASH!

return 0;

19

Trusting the Programmer?

 Buffer overflows rely on the ability to
read or write outside the bounds of a
buffer

« C and C++ programs expect the ;|
programmer to ensure this never i
happens :

But humans (regularly) make mistakes!

return

Jim Hague’s IOCCC winner program

20

Defense: Type-safe Languages

« Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

. Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

. Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

21

Why Is Type Safety Helpful?

« Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.

Preservation: memory in use by the program at a particular type T always
has that type T.

Progress: values deemed to have type T will be usable by code expecting
to receive a value of that type

« To ensure preservation and progress implies that buffers can only be
accessed within their allotted bounds, precluding buffer overflows.

Overwrites breaks preservation
Overreads could break progress

22

Costs of Ensuring Type Safety

 Performance

. Array Bounds Checks and Garbage Collection add overhead to a program's
running time.

* Expressiveness

C casts between different sorts of objects, e.g., a struct and an array.
- Need casting in System programming

This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

23

Command Injection

» Atype-safe language will rule out the possibility of buffer overflow
exploits.

« Unfortunately, type safety will not rule out all forms of attack
. Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

What's wrong with this Ruby code?

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument
system(+ARGV[O])

exit ©

Possible Interaction

> 1s
catwrapper.rb
hello. txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb
1f ARGV.length < 1 then
puts "required argument: textfile path”

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> 1s
catwrapper.rb

26

What Happened?

catwrapper.rb:

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument system() interpreted

system(+ARGV[0@]) the string as having two

commands, and
exit © executed them both

27

Client
4 N\
.
I\ /

GET foo.txt

<output>

When could this be bad?

Server

4)
"

!

{catwrapper.rb}

. J

catwrapper.rb as a web service

28

Consequences?

 If catwrapper.rb is part of a web service

. Input is untrusted — could be anything
. But we only want requestors to read (see) the contents of the files, not to

do anything else
. Current code is too powerful: vulnerable to

command injection

 How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command Injection

29

Defense: Input Validation

"Press any key to continue”

* |Inputs that could cause our program to do
something illegal

« Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

« Making input trustworthy
. Sanitize it by modifying it or using it it in such a
way that the result is correctly formed by
construction
. Chteck it has the expected form, and reject it if
no

30

Checking: Blacklisting

- Reject strings with possibly bad chars: © ; —-

if ARGV[O] =~ /;/ then

puts "illegal argument” reject
exit 1 inputs that
else have ; in them
system("cat "+ARGV[0O])
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
1lLlegal argument

31

Sanitization: Blacklisting

* Delete the characters you don’twant: © ; -

delete occurrences

system(HARGV[B]. tr ("7, ™)) of ; from input string

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

cat: rm: No such file or directory

Hello world!

> 1s hello.txt

hello. txt .

Sanitization: Escaping

- Replace problematic characters with safe ones
. change ’ to \’
. change ; to \ ;
. change - to \ -
. change \to \\

* Which characters are problematic depends on the interpreter the
string will be handed to

. Web browser/server for URIs

- URI::escape(str,unsafe chars)
. Program delegated to by web server

- CGI::escape(str)

33

Sanitization: Escaping

def escape chars(string)

pat = /(\"[\"NCINENZIN-INN TS [N [Ns)/
string.gsub(pat){|match|"\\" + match}
end
system(+escape_chars(ARGV[0O]))

> ruby catwrapper.rb “hello.txt; rm hello.txt”

cat: hello.txt; rm hello.txt: No such file or directory
> 1s hello.txt

hello. txt

34

Checking: Whitelisting

* Check that the user input is known to be safe

. E.g., only those files that exactly match a filename in the current
directory

« Rationale: Given an invalid input, safer to reject than to fix
. “Fixes” may result in wrong output, or vulnerabilities
. Principle of fail-safe defaults

Checking: Whitelisting

files = Dir.entries(".").reject {|f| File.directory?(f) }

if not (files.member? ARGV[@]) then
puts "illegal argument”
exit 1

else
system("cat "+ARGV[O])

end

reject inputs that
do not mention a
legal file name

> ruby catwrapper.rb “hello.txt; rm hello.txt”
i1llegal argument

36

Validation Challenges

« Cannot always delete or sanitize problematic characters
- You may want dangerous chars, e.g., “Peter O’Connor”
- How do you know if/when the characters are bad?
- Hard to think of all of the possible characters to eliminate

« Cannot always identify whitelist cheaply or completely

- May be expensive to compute at runtime
- May be hard to describe (e.g., “all possible proper names”)

WWW Security

« Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
. SQL injection
. Cross-site Scripting (XSS)

« These share some common causes with memory safety
vulnerabilities; like confusion of code and data

. Defense also similar: validate untrusted input

* New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

38

The Basic Structure of Web Traffic

Client

Browser

|

(Private)

Data

Server

Web server

|

j - s

The basic structure of web traffic

39

Interacting with web servers

Resources which are identified by a URL
(Universal Resource Locator)

http://hww.cs.umd.edu/~mwh/index.html
Protocol Hostname/server Path to a resource
ftp T;anslated toan|P index.html is static content i.e., a
https address by DNS fixed file returned by the server
tor (e.g.,128.8.127.3)

http://facebook.com/|delete.php?f=joel23&w=16

Path to a resource Arguments

Here, the file delete.php is dynamic content. i.e., the server
generates the content on the fly

http://www.cs.umd.edu/~mwh/index.html

HyperText Transfer Protocol (HTTP)

Client Server

HTTP Request

Browser Web server

User clicks

- Requests contain:
. The URL of the resource the client wishes to obtain
. Headers describing what the browser can do

- Request types can be GET or POST
. GET: all data is in the URL itself (no server side effects)
- POST: includes the data as separate fields (can have side effects)

HTTP GET Requests

http.//www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /rfsecurity HTTP/1.1

Host: www.reddit.com
Mozilla/5.0 (X11; U; Linux i686; en-US; nv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: 1SO-8859-1,utf-8;q=0.7,*;0=0.7
Keep-Alive: 115
Connection: keep-alive
Cookie: __ utma=55650728.562667657.1392711472.1392711472.1392711472.1; _ utmb=55650728.1.10.1392711472; _ utmc=55650...

User-Agent is typically a browser, but it can be wget, JDK, etc.

http://www.reddit.com/r/security

MY SUBREDDITS w FRONT - ALL - RANDOM | PICS - FUNNY - GAMING - ASKREDDIT - WORLDNEWS - NEWS - VIDEOS - IAMA - TODAYILEARNED

gl’eddit SECURITY |hot| new rising controversial top gilded

Refe rre r FZE How to protect yourself from identity theft (setnews con ‘
submitted 1 hour ago by vineetwalkdia
e

| comment share

security services in south africa (et sscurty

submitted 1 hour ago by armstrongsecuritysou
+] comment share

"""""]'"'I[Wéiéibb'éé'éhéék ofall time hits French site canetcom |
' nitted 15 hours ago by rajkumarselvaraj
{} ,,,,,,,,,,,,,,,,,,,, ??7‘,”)‘??‘,,?!‘?[? ,,,
“ Abusing The HTML5 Data-URI (ohg.guyanet
submitted 12 hours a y guya

comment share ‘

Protect Your Private Information With Our Shredding Services In Arlington
TX nstantshredding.com

submitted 1 hour ago by instantshredding

1 comment share

instantslveddig

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%;0=0.7

Keep-Alive: 115 . .

Connection: keep-alive Referrer URL: the site from which

[Referer: Nttp://www.reddit.com/r/securnty | this re que st was issued.

HTTP POST Requests

Posting on Piazza

HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et

Implicitly includes data
POST IIogic]api?method=content.creat*‘aid=hrteve7t83et HTTP/1.1] as a pa rt Of th e U R L

Host: piazza.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rnv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;q=0.7,%;,q=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwuCEFIGVEGWWHL]yuCvHIGtHKECCKL.5%25X+X+Ux%255M5%22%215%3F5%26x%26%26%7C%22%21r...
Pragma: no-cache

i {"method":"content.create","params":{"cid":"hrpng9g2nndos","subject":"<p>Interesting.. perhaps it has to do with a change to the ...]

Explicitly includes data as a part of the request’s content

HyperText Transfer Protocol (HTTP)

Client Server
HTTP Request

I Web server

Browser

HTTP Response

User clicks

- Responses contain:
. Status code
. Headers describing what the server provides
. Data
. Cookies (much more on these later)

. Represent state the server would like the browser to store on its behalf

HTTP

HTTP

Responses

Status Reason

version code phrase

Headers

| Set-Cookie: firstpg=0

Data

: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YzZM5SNGU3M2Y1ZTRmMN(
Set-Cookie: zdregion=MTI5LjluMTI5LjE1MzplczplczpjZDJmNWYS5YTdkODUIN2Q2YzM5SNGU3M2Y1ZTRmN{G
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinqe4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad_session=f

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

<html> ... </html>

SQL Injection

 Next lecture

