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Cybersecurity

Cybersecurity Breaches

Major security breaches of computer systems are a fact of life. They affect companies, 
governments, and individuals. Focusing on breaches of individuals' information, consider 
just a few examples:

Equifax (2017) - 145 million consumers’ records
Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records
Anthem (2014) - Records of 80 million customers
Target (2013) - 110 million records
Heartland (2008) - 160 million records

Vulnerabilities: Security-relevant Defects

 

The causes of security breaches are varied but many of them, including those given above, 
owe to a defect (or bug) or design flaw in a targeted computer system's software. The 
software problem can be exploited by an attacker. An exploit is a particular, cleverly crafted 
input, or a series of (usually unintuitive) interactions with the system, which trigger the bug 
or flaw in a way that helps the attacker.

Kinds of Vulnerability

One obvious sort of vulnerability is a bug in security policy enforcement code. For example, 
suppose you are implementing an operating system and you have code to enforce access 
control policies on files. This is the code that makes sure that if Alice's policy says that only 
she is allowed to edit certain files, then user Bob will not be allowed to modify them. 
Perhaps your enforcement code failed to consider a corner case, and as a result Bob is able 
to write those files even though Alice's policy says he shouldn't. This is a vulnerability.

A more surprising sort of vulnerability is a bug in code that seems to have nothing to do 
with enforcing security all. Nevertheless, by exploiting it the attacker can break security 



anyway. Exploits of such bugs have fun names such as buffer overflow, SQL injection, 
cross-site scripting (XSS), command injection, among many more. We'll talk about these 
and others in this part of the course.

Correctness vs. Security

The bugs underlying security exploits are, under normal circumstances, irritating. A normal 
user who stumbles across them will experience a crash or incorrect behavior. 

But a key thing to observe is that an attacker is not a normal user!

A normal user will attempt to avoid triggering software defects, and when they do trigger 
them, the effects are oftentimes benign.

An attacker will actively attempt to find defects, using unusual interactions and features. 
When they find them, they will try to exploit them, to deleterious effect.

Code that is material to a system's secure operation is called its trusted computing base 
(TCB). This is the code that must be correct if the security of the entire system is to be 
assured. Not all code is part of the TCB. For example, perhaps your implementation of the 
ls  command in your operating system mis-formats some of its output. This is irritating, 

but it doesn't compromise the operating system's security. 

Thus, while it's expected that software will have bugs even after it's deployed (perfection is 
expensive!), bugs in the TCB are more problematic. These are bugs that an attacker will 
exploit to compromise your system, causing potentially significant damage. And these 
bugs can be in surprising places. 

Building Security In

 

What can we do about software that has vulnerabilities? 

Adding Security On



Security companies like Symantec, McAfee, FireEye, Cisco, Kaspersky, Tenable, and others 
propose to deal with vulnerabilities by providing a service that runs alongside target 
software. Their approach is to add a layer of security on top of the software, separate from 
it.

For example, you can buy services that monitor your system and prevent vulnerabilities in 
resident software from being exploited. Or these services may attempt to mitigate the 
impact of exploitation. For example, a very specific kind of input may be required to exploit 
a vulnerability, and the security monitoring system can look for inputs like it, as defined by a
signature. If an input matches the signature, the security system can block or modify it and 
thus stop the exploit. 

But there are two problems with this approach:

It is retrospective. It can only work once the vulnerability, and an exploit for it, is known. 
Then we can make a signature that blocks the exploit. Until the vulnerability is 
discovered and a signature is made for it, attackers will be able to successfully (and 
surreptitiously) exploit it.
It is not (always) general. Oftentimes there are many possible inputs that can exploit a 
vulnerability, and they may not all be described with an efficiently recognizable 
signature. As such, an attacker can bypass the monitoring system by making a change 
to the exploit that does not match the signature but still achieves the desired effect.

In sum: While security monitoring is useful, it has not proven it to be effective at 
(completely) solving the security problem. There is more to do.

Designing and Building for Security, from the Start

A more direct (and complementary) way of dealing with vulnerabilities is to avoid 
introducing them in the first place, when designing and writing the software. We call this 
approach Building Security In. It requires that every software developer (this means you!) 
knows something about security and writes their code with a security mindset. 

At a high level, building a system with a security mindset involves doing two things:

Model threats. We need to think a little bit about how an attacker could influence or 
observe how our code is run. The process will clarify what we can assume about the 



trustworthiness of inputs our code receives, and the visibility of outputs our code 
produces (or how it produces them).
Employ Defensive Design Patterns. Based on the identified threats, we apply tried-and-
true design patterns to defend against them. A design pattern is a kind of code 
template that we customize to the specifics of our software or situation. Sometimes 
this code pattern can be automatically introduced by a language, compiler, or 
framework, or we may need to write the code and customize the template ourselves. 

In the rest of this lecture, we will cover three broad topics

The basics of threat modeling.
Two kinds of exploits: Buffer overflows and command injection. Both of these are 
instances of the more general exploit pattern of code injection, which we see again in 
the next lecture in the form of SQL injection and cross-site scripting.
Two kinds of defense: Type-safe programming languages, and input validation. The 
use of the former blocks buffer overflows and many other exploits. The latter is a 
design pattern often programmed by hand which aims to ensure that data influenced 
by a potential attacker cannot force our code to do the wrong thing. It defends against 
buffer overflows (when not already using a type-safe language), command injection, 
and many other code injection exploits.



Threat Modeling

Avoiding attacks means understanding what attackers can do, and putting mechanisms in 
place to stop them from doing things you don't want. Broadly speaking, this is the process 
of threat modeling. 

The Lovely and Dangerous Internet, in Brief

 

For those interested in widespread, diverse, and innovative services and information, the 
Internet is an incredible blessing. For those aiming to defend services from attack, the 
Internet is a curse. This is because the Internet makes services available to just about 
anyone, oftentimes without any sort of accountability -- potential attackers can probe and 
prod many Internet services essentially without risk.  Understanding what they can do is 
important for writing software accessible via the Internet. If you think your software won't 
be connected to the Internet, you might think again; sooner or later it will end up there.

Clients and Servers

Most sessions over the internet can view as a simplified interaction between clients and 
servers.

The client seeks to use a network-connected services, e.g., using a web browser, ssh 
client, specialized app, etc. to exchange messages with that service, over the Internet
Services are provided by a remote machine called the server. Oftentimes there is a pool 
of such machines, but the client won't necessarily see that --- they just visit store.com, 
not realizing that each interaction might go to a different server on a different machine.

Both the client and server have resources that need protection. 

The client may be on a machine with personal financial information, private records, 
browsing history, etc. The server will host valuable information as part of the service it is 
offering, such as bank account balances, student grades, personnel records, etc. Even the 
computing resources themselves may be valuable; e.g., an attacker could attempt to 
surreptitiously use a client's machine to send spam or carry out illicit activities. 



Security Policies

The client and server resources warrant, roughly speaking, three kinds of protection

Confidentiality. A confidentiality (aka privacy) policy states that a resource should not 
be readable by just anyone. Only certain users/actors should have access to the 
information. For example, my personal information, whether stored at a client or server, 
should be kept private, and not be leaked.
Integrity. An integrity policy indicates which parties may add to or modify a resource. 
For example, my bank account balance should be changeable only by me or the bank, 
and the change should only be via agreed-upon mechanisms, e.g., deposits or 
withdrawals, or certain fees.
Availability. An availability policy states that protected resources should not be 
unreasonably inaccessible. Having money at the bank but then not being able to 
access it for a long period would be a violation of availability. If an attacker managed 
to get an account on my machine and started using it to send spam, that would also be 
a violation of availability, because now (some of) my machine is not available for my 
own use.

We will see that by exploiting software vulnerabilities, attackers are able to violate any and 
all of these policies. 

Threats to (Internet-connected) Computer Systems

 

What are the ways that an attacker can cause problems? These three are typical.

As a Normal Client

An attacker can interact with an Internet service via the same channel allotted to normal 
users. If a normal user of an on-line store browse the store's products, make purchases, 
leave reviews, submit support requests, etc. then so can an attacker. 

Of course, an attacker will attempt to perform these actions in weird and wonderful ways in 
an attempt to exploit potential vulnerabilities. Attackers will not limit themselves to using 
standard tools and will not follow instructions. For example:



Instead of using an Internet browser, an attacker may craft network messages by hand, 
perhaps ones that are too long or use unusual characters.
Instead of always following the expected process, the attacker will try things that are 
off the beaten path. For example, rather than go to store.com via a browser, and then 
type in a username/password, and then click a link to go to a page, the attacker may 
skip the login page entirely and just type in the URL of the desired page, to attempt to 
bypass the authentication process. 

Thus, designers and implementers of computer systems need to think about the limits of 
what is possible, not just what is expected, to properly defend against a malicious client.

As a "Man in the Middle" (MITM)

Normal clients can send messages to and from the server, but are normally oblivious to the 
interactions the server might be having with other clients. A more powerful kind of attacker 
can observe such interactions and potentially corrupt or manipulate them. Traditionally, 
such an attacker is called a Man in the Middle (MITM) because they can sit in between two 
(or more) communicating parties.

This sort of situation is more common than you might think because of the prevalence of 
wireless networks. It is not hard to observe messages being sent around on that network, 
since it uses a broadcast medium. If you are connected to the public network at a coffee 
shop, then someone else connected to that same network may be looking at the messages 
you send and receive.

The typical defense against this kind of attacker is to use cryptography. By using 
encryption, even if the attacker can see your messages, they can't make sense of them 
(ensures confidentiality). By using digital signatures (aka message authentication codes, or 
MACs), even if the attacker can modify your messages, the receiver will be able to detect 
the modifications (ensures integrity). Additional defenses are also sometimes required, e.g., 
the use of nonces to detect the potential replay of messages.

We will not discuss cryptography or MITM-style attacks in this course. If you are interested 
in learning more, check out CMSC 456 and CMSC 414.  

As a Co-resident Service/user

https://en.wikipedia.org/wiki/Message_authentication_code
https://academiccatalog.umd.edu/search/?P=CMSC456
https://academiccatalog.umd.edu/search/?P=CMSC414


Sometimes an attacker can do more than just communicate via the same network as the 
target; they can have direct access to the same machine. 

In multi-user operating systems, such as Linux or MacOs, an attacker can log in as one user 
in an attempt to steal or manipulate information belonging to another. In today's cloud 
computing environments, like Microsoft's Azure or Amazon's Web Services (AWS), a target 
may be running a virtual machine instance on the same host as one run by the attacker. 
Mobile code technologies enable attacker-provided code to run directly on the target 
machine. For example, an attacker could try to upload a malicious Javascript program to a 
web site that is visited by a potential victim, who will unknowingly download and run the 
program in their browser when they visit the site. 

In these cases, co-residency means an attacker can observe or modify resources shared or 
even directly owned by the target, such as memory or stable storage (files), in such a way 
as to achieve his goals. 

 

https://en.wikipedia.org/wiki/System_virtual_machine


Buffer Overflows

What is a Buffer Overflow?

A buffer overflow describes a family of possible exploits of a vulnerability in which a 
program may incorrectly access a buffer outside its allotted bounds. A buffer overwrite 
occurs when the out-of-bounds access is a write. A buffer overread occurs when the access 
is a read. 

The key question is: What happens when an out-of-bounds access occurs? 

If your program is written in a  memory-safe or type-safe programming language, some 
important attacks are taken off the table; if it is not, then there are fairly dire security 
implications, as we will see.

Example: Out-of-Bounds Read/write in OCaml

 

Consider the following simple program, written in OCaml. There's a bug in this code; can 
you spot it?

let rec incr_arr x i len =1
  if i >= 0 && i < len then2
    (x.(i) <- x.(i) + 1;3
    incr_arr x (i+1) len)4
;;5

6
let y = Array.make 10 1;;7
incr_arr y 0 (1 + Array.length y);;8

The function incr_arr  iterates over an OCaml array, adding 1  to each of its elements. 

The code creates an array y  of size 10, with each element initialized to 1. It then calls 

incr_arr  on this array. What happens?

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
http://www.pl-enthusiast.net/2014/08/05/type-safety/
https://ocaml.org/
https://ocaml.org/releases/4.07/htmlman/libref/Array.html


Exception: Invalid_argument "index out of bounds".

The bug is on line 8:  the code should be pass Array.length y  as the third argument to 

incr_arr , but is instead passes that expression, plus 1. As such, incr_arr  will read (and

attempt to write) one past the end of the array, which the program detects and signals by 
throwing an exception.

Example: Out-of-Bounds Read/write in C

 

Here's our buggy example again but this time written in C.

#include <stdio.h>1
2

void incr_arr(int *x, int len, int i) {3
  if (i >= 0 && i < len) {4
    x[i] = x[i] + 1;5
    incr_arr(x,len,i+1);6
  }7
}8

9
int y[10] = {1,1,1,1,1,1,1,1,1,1};10
int z = 20;11

12
int main(int argc, char **argv) {13
  incr_arr(y,11,0);14
  printf("%d =? 20\n",z);  15
  return 0;16
}17

As in the OCaml version, the code in main  invokes incr_arr  with array y , but after 

calling the function, main  also prints out the value of another variable, z . As in the 

OCaml version, the array y  that is being passed to incr_arr  has length 10, but the 

second argument is given as 11, which is one more than it should be. As a result, line 5 will 
be allowed to read/write past the end of the array. 



In our OCaml version, running the program resulted in an exception being thrown; what will 
happen in this C version? 

I can compile this program with the clang  C compiler (no optimizations) on my Mac to 

produce the executable a.out . When I run a.out , it completes normally, outputting the 

following:

21 =? 20

What happened? 

Basically, when incr_arr  read x[10]  on line 5 (i.e., when argument i == 10 ), the 

function read the contents ( 20  ) of z , since it happens to be allocated in memory just 

past the end of y  (the memory that x  is pointing to). Then line 5 added 1 to what it read, 

and wrote the result ( 21 ) back to z , which is printed by main . 

When we fix the bug (by changing line 14 to be incr_arr(y,10,0); ), the program prints 

the following instead, since z  is no longer modified:

20 =? 20

To recap: In OCaml, reading/writing outside the bounds of a buffer always results in an 
exception, and the program halts. In C, reading/writing outside the bounds of the buffer is 
not guaranteed to cause an exception. Instead, basically anything could happen. Here, we 
saw that adjacent memory can be read or modified.

Exploiting a Vulnerability

 

When an application has a bug in it that allows the program to access a buffer outside its 
bounds, an attacker can try to exploit it. He does this by controlling the input to the program 



in a way that triggers the bug to his advantage.

In our example, the program always fails, so that's not very interesting. But what if we 
changed main  to be the following ?

#include <stdlib.h>1
int main(int argc, char **argv) {2
  int len = 10;3
  if (argc == 2) len = atoi(argv[1]);4
  incr_arr(y,len,0);5
  printf("%d =? 20\n",z);  6
  return 0;7
}8

If we run the compiled program a.out  with no arguments, then it works as expected (the 

guard on line 4 is false). But suppose we run it thusly.

a.out 11

Since argc == 2 , the guard on line 4 is true so it sets len  to be 11. Thus the call to 

incr_arr  on line 5 is the same buggy one we saw in the original version of our buggy C 

program, and z  will be overwritten.

An attacker can exploit the bug if he can influence what (and whether) the argument is 
passed to a.out . If he can force the argument to be 11 (or more), then he can trigger the 

bug. 

What Can Exploitation Achieve?

 

To recap: Suppose my program has a bug in it that allows reading or writing outside the 
bounds of a buffer, and the attacker is able to control that happening, at least to some 
degree. What can the attacker achieve?



Buffer Overread: Heartbleed

Heartbleed is a bug in the popular, open-source OpenSSL codebase that is used by a 
substantial number of Internet clients and servers to carry out secure communication, e.g., 
as part of the HTTPS protocol. By one account, Heartbleed "made more headlines and news
articles in one day than any war had since Vietnam." Now it has its own website! 

This XKCD comic explains it very well:

Heartbleed's operation is not so different than our previously developed example. 

In that example, the a.out  program can be invoked with an argument that specifies the 

claimed length. As we saw, the length could be wrong! This means that if the attacker is 

https://www.openssl.org/
https://en.wikipedia.org/wiki/HTTPS
https://twitter.com/colmmacc/status/1114951109825658881?s=20
https://heartbleed.com/


able to run a.out  with a given length that's greater than the actual length of the buffer 

(i.e., 11 or more), then the attacker can cause the buffer to be read (and written) outside its 
bounds, accessing nearby memory when that happens.

In Heartbleed, the attacker (the person, in the XKCD cartoon) acts as the client. It sends a 
"heartbeat" message to the victim server (the machine, in the cartoon). This message 
includes some text, and specifies the length of the text. The machine writes the client's text 
to a buffer and then sends a message back with the contents of the buffer, which contains 
that text. Crucially, the machine asks the client to specify a length along with the text, and 
this length can be wrong! Just as with our example, if the specified length is greater than 
the actual length of the provided text, the server will just send back whatever happens to be 
in memory beyond the end of the buffer. 

As it turns out, this memory could contain very sensitive information, such as secret 
cryptographic keys or passwords, perhaps provided by previous clients. Due to OpenSSL's 
popularity, many Internet servers needed to be shut down and patched, and public 
cryptographic key certificates that they used to authenticate their identity needed to be 
reissued, out of fears that exploits of Heartbleed may have stolen them.

Buffer Overwrite: Morris Worm

The Morris Worm was the work of Robert Morris, a computer science student at Cornell 
University. Occurring in 1988, it is one of the first widely acknowledged (and impactful) 
uses of a buffer overflow exploit (in the program fingerd) for the purposes of injecting code. 

As described in this article, the exploit worked by sending a larger message to the fingerd  

program than it expected to ever receive. In particular, the program pre-allocated a buffer of 
size 500 in a local variable in main . The exploit sent to the program an input that filled 

that buffer with 536 bytes of data -- more than it could hold. As a result, the extra bytes 
spilled out and overwrote other parts of the call stack, including main 's return address. 

Therefore, when the main  function completed, instead of properly returning to its caller, it 

"returned" to an address placed by the attacker. 

Cleverly, the exploit chose the overwrite the return address with a value that pointed inside 
the just-overflowed buffer, so that after the return, the contents of that buffer were treated 
by the machine as code. This code was also cleverly chosen so that when executed it 

https://spaf.cerias.purdue.edu/tech-reps/823.pdf
https://en.wikipedia.org/wiki/Finger_protocol
http://computerarcheology.com/Virus/MorrisWorm/


performs execve("/bin/sh",0,0) ; i.e., it turns the current program into a shell running on 

the attacked system. This attack came to be known as a stack smashing attack and the 
attack's payload came to be known as shellcode.

Buffer overwrites are also dangerous even when stack smashing (or similar sorts of code 
injection attacks) are not possible. Returning to our example, imagine that the variable z  

represented a flag that indicates whether a user has been authorized to carry out a sensitive 
operation. By overflowing buffer y , an unauthorized user will be granted excess privilege.

Code Injection

The Morris Worm exploit aims to perform code injection. It works by tricking the program to 
treat attacker-provided data as code. Buffer overflows are one vector to doing code 
injection, where the injected code is machine code. But it is not the only one, as we will see 
later; others include

SQL injection 
Command injection
Cross-site scripting
Use-after-free (violating Temporal Safety)
... and many others are a kind of bug, coupled with an exploit that aims to inject code 
of the attacker's choice.

How can we defeat them?

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://en.wikipedia.org/wiki/Shellcode


Defense: Type-safe Languages

To recap what we have seen so far about buffer overflows:

A buffer overflow is the term for a family of exploits of bugs that allow a buffer to be 
read or written outside its bounds.
A buffer overflow can be used to steal sensitive information (as with Heartbleed) or 
even to inject and run attacker-provided code (as with the Morris Worm).

We also saw something very interesting: Neither of these, nor indeed any other, exploits of 
buffer overflows are possible in OCaml. Why? Because any attempt to read or write outside 
the bounds of a buffer is detected immediately, and met with a run-time exception. 

This is a consequence of OCaml being a type-safe programming language; indeed, the 
programs written in Java and Ruby are immune from buffer overflows and similar sorts of 
memory corruption attack, too, since they are also type-safe.

Why Is Type Safety Helpful?

 

Type safety ensures two useful properties that preclude buffer overflows and other memory 
corruption-based exploits.

Type safety ensures that memory in use by the program at a particular type T always has 
(or can be treated as having) that type T. This property, called preservation (aka subject 
reduction), ensures that, for example, if x  is a pointer to an integer ( int ref  in OCaml), it

will always be usable at that type. No action by the program can change x 's contents to 

break the invariants assumed of values of that type. As a consequence, this means that a 
pointer-typed value cannot be overwritten to make it something that is not a proper pointer 
(created by a legitimate program action) to the program's heap or stack.

In addition, values deemed to have type T will be usable by code expecting to receive a 
value of that type; i.e., the aforementioned invariants of values of a type T are sufficient to 
ensure safe execution. For example, code expecting to receive an array of integers will not 
break if it tries to iterate down the array and increment each element, since these operations 

http://www.pl-enthusiast.net/2014/08/05/type-safety/


(reading and writing within the stated bounds of the array, and adding one to an integer) are
permitted on objects of this type. This property is called progress. 

To ensure preservation and progress implies that buffers can only be accessed within their 
allotted bounds, precluding buffer overflows. This is because overwrites could break 
preservation, since they could end up breaking the assumed invariants of the type of a 
nearby value. Overreads could break progress, since an out-of-bounds read may return 
memory that does not conform to the invariants of the expected type (e.g., reading an out 
of the bounds of an array of integer pointers may return gibberish and not a proper pointer).

Type safety turns out to preclude other pernicious exploits, too, that work by corrupting 
memory. These include use after free (an example of which we give below), format string 
attacks, and type confusion, among others. These exploits attempt to force memory 
created at type T to be used at another type S instead. By enforcing type safety, the 
language ensures these attacks can't happen. This is good for program security, and it's 
also good for program reliability and even programmer productivity, since type safety rules 
out many sorts of hard-to-find bugs that make a program prone to crashing.

Costs of Ensuring Type Safety

 

C and C++ are the only programming languages in common use that eschew type safety. 
Why do they do this? There are two commonly cited reasons, performance and 
expressiveness. There are two direct forms of performance slowdown typical of type-safe 
languages: bounds checks and garbage collection.

Array Bounds Checks for Spatial Safety

Run-time checks to ensure that buffer accesses are in bounds (thus enforcing spatial 
safety) add overhead to a program's running time. If these checks occur in a tight loop, their 
impact is multiplied. Reconsider our OCaml example:

let rec incr_arr x i len =1
  if i >= 0 && i < len then2
    (x.(i) <- x.(i) + 1;3
    incr_arr x (i+1) len)4

https://owasp.org/www-community/attacks/Format_string_attack
https://www.microsoft.com/security/blog/2015/06/17/understanding-type-confusion-vulnerabilities-cve-2015-0336/


In principle, safely executing x.(i)  in incr_arr  requires the compiler to add a lower-

bound check and an upper-bound check, to confirm that i >= 0  and i <  length( x ). 

This pair of checks will be inserted for each x.(i)  occurring on line 3, i.e., for both the 

read and the write. Since not much else is happening in the loop, the bounds checks could 
dominate running time. 

Fortunately, it is now common for a compiler to avoid inserting bounds checks when it can 
prove they are not needed. This is true of ahead-of-time compilers for languages like 
OCaml, and the just-in-time compilers that occur inside of language virtual machines, like 
the Java Virtual Machine (such as the one maintained by Oracle) or the Javascript 
execution engine (e.g., like Google's V8). 

In our example, the OCaml compiler knows that to reach line 3, the guard on line 2 must 
have been true and thus that i >= 0 && i < len .  Knowing this, we can deduce that as 

long as len <=  length( x ), the access x.(i)  will be in bounds, so this is the check the 

compiler will insert. Moreover, since neither i  nor x  are changed between the two 

x.(i)  accesses on line 3, there is no need to perform the check twice: One check will do, 

just prior to line 3, for both accesses. Such reasoning allows the compiler to replace the 
four checks it would have inserted with a single one. Here's what the program would look 
like, if we made the check explicit:

let rec incr_arr_with_check x i len =1
  if i >= 0 && i < len then2
    (if len <= Array.length x then3
       x.(i) <- x.(i) + 14
     else raise (Invalid_argument "index out of bounds");5
    incr_arr_with_check x (i+1) len)6

Even this check can be eliminated with a little more work: The compiler just has to add a 
check that len <=  length( x ) prior to the initial call to incr_arr ; it will be trivially true 

for each of the recursive calls. (And, likewise, if we'd written our program as above with an 
explicit check, the compiler will know that no additional checks will be needed, since we've 
done the required checking already.)

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://docs.oracle.com/javase/9/vm/java-virtual-machine-technology-overview.htm
https://v8.dev/


Recent work on an extension to C called Checked C aims to support bounds checking in C, 
to avoid buffer overruns. Preliminary work (in 2018 and 2020) has shown that running time 
overhead due to bounds checks can be reduced to just a few percent, on average, if the 
compiler is smart enough.

Temporal Safety Violations

In C and C++ it is the programmer's responsibility to free dynamically allocated memory 
that is no longer needed, so that it can be recycled. In C, dynamic memory is allocated via a 
call to malloc , and this memory is freed by passing its pointer to free . In C++ one calls 

new  to allocate an object and delete to free it. Both calls are typically inexpensive.

In a type-safe language, manual allocation may be explicit (like new  in Java and Ruby) 

while programmer-directed deallocation, e.g., via free  or delete , is generally disallowed 

(with Rust being a notable exception). This is because prematurely deallocating memory 
can compromise safety, in particular temporal safety. To see why, consider the following C 
program.

#include <stdlib.h>1
struct list {2
  int v;3
  struct list *next;4
};5
int main() {6
  struct list *p = malloc(sizeof(struct list));7
  p->v = 0;8
  p->next = 0;9
  free(p); // deallocates p10
  int *x = malloc(sizeof(int)*2); // reuses p's old memory11
  x[0] = 5; // overwrites p->v12
  x[1] = 5; // overwrites p->next13
  p = p->next; // p is now bogus14
  p->v = 2; // CRASH!15
  return 0;16
}17

The top of the program defines a struct list  for a linked list; the value stored at the list 

node is in field v , and the pointer to the next list element is in the next  field. The main  

https://www.microsoft.com/en-us/research/project/checked-c/
http://www.cs.umd.edu/~mwh/papers/checked-c.pdf
https://cs.rochester.edu/u/jzhou41/papers/freebsd_checkedc.pdf


function calls malloc  to allocate a struct list  node, storing a pointer to it in p , and 

then lines 8 and 9 initialize the value and next pointer to 0  (recall that in C, 0  when used 

as a pointer is equivalent to null  in Java). Line 10 frees this memory, allowing it to be 

reused. 

Then the trouble begins. Line 11 calls malloc  which is very likely to reuse the just-freed 

memory. Here, malloc  creates a 2-element int  array, stored in x , and lines 12 and 13 

initialize each of the array's elements to 5 . Line 14 is buggy: It uses p  even though p  

no longer points to valid memory, since it was freed; p  is called a dangling pointer. 

Assuming that x  and p  point to the same memory, due to the memory being recycled, 

x[0]  is now an alias for p->v  and  x[1]  is an alias of p->next . This means that 

writing to x[1]  on line 13 overwrites p->next  with 5 . The overwrite on line 13 means 

that when line 14 updates p  to p->next  it is setting p  to 5 , and when line 15 

performs p->v , it is dereferencing 5  as if it were a pointer. Since 5  is very unlikely to be 

a legitimate memory address (usually the lower range of memory is reserved for the 
operating system), and is certainly not a pointer to a proper struct list  as its type 

claims, we have violated type safety. On my Mac, if we compile and run this program we 
see:

Segmentation fault: 11

Using a pointer after it is freed is a bug that can be (and frequently is) exploited, e.g., to 
perform code injection. Such an exploit is, aptly, referred to as a use after free. Such 
exploits are not possible in a type-safe language, which the language usually ensures by 
precluding calls to free  entirely. If you can't call free  to deallocate the memory, you 

can't deallocate it prematurely! But if we are not allowed to call free  how do we avoid 

running out of usable memory?

Garbage Collection

Garbage collection (GC) is, generally speaking, an automatic process by which dynamically 
allocated memory that the program no longer needs is identified and recycled. A GC works 
by reclaiming any objects that are not reachable by the actively running program. A 
reachable object is one that can be accessed via a chain of pointers, starting from a local or

https://owasp.org/www-community/vulnerabilities/Using_freed_memory
https://www.cs.kent.ac.uk/people/staff/rej/gc.html


Tracing in a Mark/Sweep Garbage Collector

global variable. A reachable object may be accessed by the program in the future, so it’s not 
safe to get rid of it. On the other hand, an unreachable object will never be accessed, since 
there’s no path to it from any in-scope variables; hence, it’s safe to remove. 

Reachability is typically determined by one of two methods: tracing or reference counting. 

A tracing GC determines reachability directly: Starting from the local and global variables 
(the “roots”), the GC follows any pointers it comes across, ultimately identifying all of the 
reachable memory objects. Unreached objects are recycled. 

[Above is from 
https://en.wikipedia.org/wiki/Tracing_garbage_collection#/media/File:Animation_of_the_
Naive_Mark_and_Sweep_Garbage_Collector_Algorithm.gif but it is not embedding 
properly.]

Reference counting determines reachability incrementally, as the program runs: Along with 
each object is stored a hidden reference count field, which keeps track of the number of 
direct pointers to the object that exist in the program. Every time a pointer is updated to 
point to an object, that object’s reference count is incremented. When a pointer to an object 
is dropped, e.g., by the program changing the pointer or it going out of scope and/or being 
freed, the count Is decremented. When a count goes to zero, the object is garbage and can 
be recycled.

https://en.wikipedia.org/wiki/Tracing_garbage_collection#/media/File:Animation_of_the_Naive_Mark_and_Sweep_Garbage_Collector_Algorithm.gif


Garbage collection helps ensure type safety by avoiding the use-after-free bugs we saw 
before: No object will be freed if it could be used again in the future. This is good for 
security, and it’s also good for ease of use—figuring out when to free an object is one less 
thing the programmer needs to worry about.

On the other hand, GC adds extra performance overheads. A tracing collector adds to the 
program’s running time the cost of periodically tracing the program’s memory and collecting 
the unreachable objects. Tracing is also problematic for performance because the program 
is paused while it takes place. Tracing collectors can reduce running time overhead by 
delaying when tracing takes place, but doing so adds space overhead—the longer you wait 
to trace, the more garbage there is taking up potentially valuable memory. In more 
advanced GCs, tracing can also be done in parallel, to speed up GC while the program is 
paused, and/or concurrently with the program while it runs, thus slowing its progress but 
not stopping it during GC.

A reference counting collector avoids this long pause but still adds overhead for 
maintaining reference counts (and can result in a periodic pause if there are cascading 
deletes). Reference counting also adds a per-object space overhead, due to having to store 
the count.

The time and space overheads of garbage collection are often perfectly acceptable, given 
the productivity and security benefits GC offers. This fact is evidenced by the vast number 
of programs now written in garbage collected languages; back in the early to mid 90s, GC 
was a dirty word in many circles! But there are some circumstances for which performance 
is at a premium, and in these circumstances there is resistance to moving away from C and 
C++, despite the risks.

Expressiveness

Type safety, as we have seen, is often enforced by limiting the operations allowed on 
particular objects to ones that (always) ensure progress and preservation (and, usually, a 
form of type abstraction, which we won't get into). This means that type safety can 
sacrifice needed expressiveness in some cases. 

For example, the C programming language was originally invented at AT&T Bell Labs to 
enable writing the UNIX operating system in a high-level language (i.e., not machine code). 
In operating system code, you are interacting with the underlying hardware. You may know 

https://docs.oracle.com/javase/10/gctuning/introduction-garbage-collection-tuning.htm
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/


that a particular hardware address must store a pointer to a structure, say the page tables; 
the operating system needs to be able to store this pointer at that address. So, the OS code 
casts that address to a pointer to a struct  that describes the format of the page tables. 

This sort of operation -- cast from integer to pointer -- is not permitted in a type safe 
language. We have already seen why: Not every integer is a legal pointer, and the unfettered 
cast permits many dangerous operations. But in the OS context, we need to allow this sort 
of thing at least sometimes. So, C was designed to afford programmers more freedom to 
perform potentially dangerous actions.

C similarly permits casting between different sorts of objects, e.g., a struct  and an array. 

We do this during calls to memcpy , for example, which takes a pointer to a buffer:

#include <string.h>1
2

struct foo { int x; int y; };3
4

void f(struct foo *p) {5
  struct foo s;6
  memcpy(&s,p,sizeof(struct foo));7
}8

The alternative of copying a struct  field by field might be slower than bulk copy via 

memcpy . 

Interestingly, there are many other uses of casts in C that are common, but are technically 
not supported by the language definition. But in any case, most compilers support them.

Unsafe code via Escape Hatches

One way that type-safe languages work around expressiveness problems is to have "escape
hatches" that allow potentially unsafe operations. In OCaml, for example, you can call into 
C code to do your dirty work, using the OCaml Foreign Function Interface. Or, if you know 
enough about OCaml representations, you can even do unsafe things in OCaml itself via 
Obj.magic , part of the Obj module.

https://dl.acm.org/doi/10.1145/3290380
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Obj.html


Command Injection

A type-safe language will rule out the possibility of buffer overflow exploits, and this is an 
important benefit. Unfortunately, type safety will not rule out all forms of attack. 

In this unit we'll talk about command injection as another form of code injection attack, but 
one that requires a bit more programmer vigilance to prevent.

What's Wrong with this Ruby Code?

 

The following is the program catwrapper.rb , written in Ruby.

if ARGV.length < 1 then1
  puts "required argument: textfile path"2
  exit 13
end4

5
# call cat command on given argument6
system("cat "+ARGV[0])7

8
exit 09

The intention of this program is simply to call the system cat  command to print out the 

contents of the argument that was passed to the program (line 7). If no argument is 
passed, the program prints an error message and exits (lines 1-4).

Here's an interactive shell session, running the program:

> ls1
catwrapper.rb2
hello.txt3

4
> ruby catwrapper.rb hello.txt5
Hello world!6

7

https://owasp.org/www-community/attacks/Command_Injection


> ruby catwrapper.rb catwrapper.rb8
if ARGV.length < 1 then9
puts "required argument: textfile path"10
…11

12
> ruby catwrapper.rb "hello.txt; rm hello.txt"13
Hello world!14

15
> ls16
catwrapper.rb17

First, we call ls  to list the contents of the current working directory (lines 1-3). We see the 

catwrapper.rb  program itself, and a file hello.txt . Then we execute 

ruby catwrapper.rb hello.txt  -- this runs the catwrapper.rb  program with 

hello.txt  as its argument, and the result is that cat hello.txt  is called, which prints 

the contents of that file (lines 5-6). Then we call catwrapper.rb  on itself, which causes its 

own code to be printed (lines 8-11). The next command is the most interesting: the 
argument to catwrapper.rb  is  “hello.txt; rm hello.txt” , which looks unusual. The 

program doesn't reject this argument and prints out the contents of hello.txt  as before. 

But on line 16 when we ls  the directory we see that hello.txt  is no longer there. What 

happened?

The Answer

What happened is that the Ruby system()  command (line 7 in catwrapper.rb ) 

interpreted the string ARGV[0]  as having two commands, and executed them both! That is, 

when calling catwrapper.rb  with "hello.txt; rm hello.txt"  we end up invoking 

system("cat hello.txt; rm hello.txt") . This means that we will cat  (print) the 

contents of hello.txt  but then remove it!

This was likely not our intention in writing catwrapper.rb . Instead, we were simply 

interested in printing the contents of a file, passed as an argument. Rather than implement 
this functionality from scratch we used the existing cat  program. This is all well and 

good. But the way we invoked cat , via system() , allowed for problems that we didn't 

appreciate. 

 



catwrapper.rb as a web service

When could this be bad?

If catwrapper.rb  is just a program that we use in our own work, then it's not a big deal. 

We are not going to pass it weird arguments. But suppose that catwrapper.rb  ends up 

getting incorporated into a web service, e.g., in a Ruby on Rails web application. Perhaps a 
client browser can send a request to the server and this request is translated directly into an 
argument to catwrapper.rb , whose output is then sent back to the client.

Now a malicious user in a far-flung place in the world could send the input 
"hello.txt; rm hello.txt" and thereby corrupt the filesystem on the web server. 

The problem is that the input given to catwrapper.rb  in the web server context is 

untrusted; we cannot assume well-meaning clients, so we must allow for the possibility that 
the input could be absolutely anything. If we want clients only to be able to see the contents
of files, then the current code is too powerful. The fix? We need to add code to validate the 
inputs.

Command Injection is Code Injection

https://rubyonrails.org/


As with the stack smashing attack we discussed in the context of buffer overflows, 
command injection is a kind of code injection attack. In both cases, the program expects to 
receive and process data, but the adversary is able to trick the program to treat received 
data as code. For stack smashing, this is machine code. For command injection, it is shell 
commands. 



Defense: Input Validation

Summarizing what we have learned so far, there are two core elements that make a 
command injection exploit a real threat:

There are possible, though atypical, inputs that could cause our program to do 
something illegal
Such atypical inputs are more likely when an untrusted adversary is providing them

The same two elements are present for buffer overflow exploits, too. With the Morris worm, 
the fingerd  program would accept any string as input, but strings over 500 characters in 

length would overrun the input buffer, and particular choices of string could induce (very) 
bad behavior. Such inputs would be atypical when coming from a normal (trusted) user, but 
were possible (and happened!) when coming from an adversary.

A type-safe language makes the problematic inputs for a buffer overflow impossible: Any 
attempt to go outside the buffer is blocked by the language. But with command injection 
the language does not help us. So, what can we do? We must add code to validate the 
inputs.

Checking and Sanitization

 

Input validation refers to a process of making an input valid for use, meaning that it cannot 
possibly result in harm if provided to our service. A valid input will be a subset of all 
possible inputs that a user (including a malicious one) could provide. For our 
catwrapper.rb  example, valid inputs are, ultimately, names of files whose contents a 

particular user is allowed to see. Since "hello.txt; rm hello.txt" is not the name of a 

valid file, it is not a valid input.

There are two general ways we can write a program to ensure inputs to it are valid:

We can check that inputs match the desired form. If they do not then they are rejected 
and the program proceeds no further.



We can force inputs to match the desired form by modifying them, if necessary, before 
proceeding. Modifying a potentially invalid input so it becomes a valid one is called 
sanitization. 

There are three kinds of input validation in common use: blacklisting, escaping, and 
whitelisting. 

Blacklisting

Blacklisting works by preventing inputs that include features that could make it dangerous. 
Blacklisting has variants involving either checking or sanitization.

Checking

For example, we could replace the call system("cat "+ARGV[0])  in our catwrapper.rb  

program to be the following.

if ARGV[0] =~ /;/ then1
  puts "illegal argument"2
  exit 13
else4
  system("cat "+ARGV[0])5
end6

The first line checks the argument passed to the program ARGV[0]  against a regular 

expression that matches any string that has a semicolon ( ; ) in it. If the argument 

matches the regular expression it is rejected, which blocks the attack that we saw 
previously.

> ruby catwrapper.rb "hello.txt; rm hello.txt"1
illegal argument2

Sanitization



Rather than checking and rejecting a problematic input, we could sanitize the input to 
conform to our well-formedness condition. So we could replace the above 6-line code 
fragment that rejects those inputs containing a semicolon with the following line of code, 
which simply removes any semicolons present.

system("cat "+ARGV[0].tr(";",""))

If we run this version of catwrapper.rb  with our problematic input, we get the following.

> ruby catwrapper.rb "hello.txt; rm hello.txt"1
Hello world!2
cat: rm: No such file or directory3
Hello world!4

5
> ls hello.txt6
hello.txt7

Since the semicolon from the input is removed, the call to to system  ends up being 

system("cat hello.txt rm hello.txt") . When the cat  program is given multiple 

arguments, it prints them out in sequence. Here, cat  thinks it is being asked to print three 

files, hello.txt , rm , and hello.txt  again. The first and third arguments name a valid 

file in the current directory, so its contents are printed (twice). But rm  is not a file in the 

current directory, so cat  complains: rm: No such file or directory .

This example illustrates that while sanitization may permit accepting more inputs, one 
drawback is that bogus inputs can lead to confusing error messages going back to the 
user.

Escaping

Escaping is a kind of input sanitization that replaces potentially problematic input 
characters with benign ones (rather than, say, removing them, as with blacklisting). Just as 
with the checking variant of blacklisting, we can specify problematic characters to find and 
replace using a regular expression. Here's a replacement for the call 



system("cat "+ARGV[0])  in our original catwrapper.rb  program that does escaping 

first.

def escape_chars(string)1
  pat = /(\'|\"|\.|\*|\/|\-|\\|;|\||\s)/2
  string.gsub(pat){ |match| "\\" + match }3
end4
system("cat "+escape_chars(ARGV[0])) 5

The escape_chars  function takes argument string  and uses the gsub  function to 

replace substring matches of regular expression pat  with the matched substring match  

preceded by a double-backslash ( "\\" ). For example:

escape_chars("hello")  returns "hello"  

escape_chars("hello there")  returns "hello\ there"  

escape_chars("rm -rf ../")  returns "rm\ \-rf\ \.\.\/\" 

Running our modified catwrapper.rb  program with the original exploit, we get the 

following.

> ruby catwrapper.rb "hello.txt; rm hello.txt"1
cat: hello.txt; rm hello.txt: No such file or directory2

3
> ls hello.txt4
hello.txt5

What happened? The system  command ends up being called with the string

"cat hello\\.txt\\;\\ rm\\ hello\\.txt" . The system  command interprets this 

string as a shell command with escaping applied, so that it treats the sequence \\  as an 

escaped backslash. It therefore strips each leading backslash so that what is passed to the 
shell to be executed is "cat hello\.txt\;\ rm\ hello\.txt" . To the shell, 

hello\.txt\;\ rm\ hello\.txt is interpreted as a single argument to cat , since all 

spaces are preceded by a backslash. So cat  treats the argument as a file whose name 

has spaces in it. The error message above indicates that this file is not found, as expected.



Escaping is Language Specific

In our example we are creating a shell program to pass to the system  command, which 

interprets that program. We are escaping characters that might otherwise be treated as 
code by the system  command and the shell interpreter to be treated as data instead. What 

characters may be mistaken as code is language specific, so there is not a one-size-fits-all 
escaping process. 

There are standard escaping functions on a per-language basis. For example, Ruby's 
CGI::escape(str)  function will escape str  so it can safely appear in a URI, e.g., 

CGI:escape("'Stop!' said Fred")  becomes "%27Stop%21%27+said+Fred" .We will see 

later on the notion of a prepared statement for SQL queries; SQL is a programming 
language for accessing the contents of a database. In essence, the process of putting 
together a prepared statement is tantamount to escaping user input so that it is not 
misinterpreted as SQL code.

Whitelisting

Whitelisting is a form of checking—rather than checking that bad characters are not 
present, it confirms that only good characters are. 

Motivation

Why use whitelisting? One challenge with both blacklisting and escaping is making sure 
that you identified all of the dangerous characters. In our example escape_chars  function, 

for example, we left out &  from the pat  regular expression. Since this character is not 

escaped, if provided in the input to catwrapper.rb  it will be interpreted as code, directing 

the shell to "run in the background."  

Escaping also has the problem that it doesn't always render command characters 
harmless. For example, suppose in the following we use the form of catwrapper.rb  with 

our escape_chars  function. 

> ls ../passwd.txt1
passwd.txt2

3



> ruby catwrapper.rb "../passwd.txt"4
bob:apassword5
alice:anotherpassword6

Despite escaping the .  and /  characters, catwrapper.rb  still dutifully follows the path 

to directory one level up from where it is run and prints the contents fo the passwd.txt  

file. 

A web service for catwrapper.rb  probably only intends to give access to the files in the 

current directory; the ../  sequence should have been disallowed, but escaping was not up

to the task of doing so. A failure to disallow it is called a Path Traversal vulnerability. Using 
blacklisting to filter out ..  sequences is one solution. (But, perhaps filtering out ..  

would unnecessarily disallows paths like foo/../hello.txt  where foo  is a subdirectory 

in the current working directory.)

Making Sure Input is Good (not Bad)

Whitelisting checks that the input is known to be safe rather than just known to be unsafe. 
For catwrapper.rb , we only want those files that exactly match a filename in the current 

directory. 

files = Dir.entries(".").reject {|f| File.directory?(f) }1
if not (files.member? ARGV[0]) then2
  puts "illegal argument"3
  exit 14
else5
  system("cat "+ARGV[0])6
end7

The above code reject inputs that do not mention a legal file name. 

> ruby catwrapper.rb "hello.txt; rm hello.txt"1
illegal argument2

https://owasp.org/www-community/attacks/Path_Traversal


The rationale for whitelisting is that given an input, it is safest to reject it unless we have 
evidence that it's OK. This is the principle of fail-safe defaults. Attempts to just reject 
known-bad inputs may miss ones we don't know about, and attempts to fix known-bad 
inputs may produce inputs that result in wrong output, or even permit exploits. 

Whitelisting is not a panacea. It may be expensive to compute the whitelist at runtime—
getting the list of valid files is not cheap. A whitelist may also be hard or impossible to 
describe (e.g., “all possible proper names”). But from a security perspective a whitelist is 
preferred when possible, since it's the safest alternative.

Summary

 

To sum up: Input validation is needed when not all of the possible inputs to a piece of code 
are sure to be safe inputs. 

Any inputs arriving from the outside world, which could be from an untrusted or adversarial 
party, should be treated with suspicion. Any code that directly consumes such inputs 
should be scrutinized, as should code that subsequently processes outside inputs. The taint
of adversarial influence could, without care, propagate through a system to files, databases, 
etc. and subsequently harm future interactions.

Input validation—in the form of blacklisting, escaping, and whitelisting—can make sure that 
untrusted input is made safe.



WWW Security

Much of what the world does today with computers involves communications via the 
Internet. 

Much of what happens over the Internet is driven the World-Wide Web (WWW), or simply 
"the Web," which is defined by exchanges of HyperText Markup Language (HTML) 
documents (and many others besides) between clients and servers via the HyperText 
Transfer Protocol, or HTTP, and its cryptographically secured version, HTTPS. Clients and 
servers both have resources that need protecting, including personal records, medical 
information, corporate intellectual property, bank account balances, stock holdings, and 
more. In short, many of the things we value are accessible via the Web. 

Given the rich trove of valuable assets on Web-connected computers, attackers are 
constantly trying to subvert protections of those assets. One way they do this is to find and 
exploit vulnerabilities in software running on Web-connected computers, including web 
browsers, web servers, database management systems, and operating systems. This 
constant threat means that programmers of Web-accessible software need to be careful 
not to introduce vulnerabilities in their code. Even code not originally written for use over the
Web often ends up there, so not intending to write for the Web is no excuse. Essentially all 
programmers are on the front lines.

In this unit, we will first introduce the basics of the Web -- who the players are and how 
things work together. Then we are going to look at two common, dangerous WWW attacks: 
SQL Injection, and Cross-Site Scripting. Both are a kind of code injection which works by 
getting a program to confuse what it intends to be data as code. As it turns out, we can 
defend against them by employing input validation techniques, just as we previously 
discussed for defending against buffer overflows and command injection attacks. One new 
challenge is that the Web's ubiquitous use of mobile code, particularly Javascript 
programs.

WWW: The Basics

 



The basic structure of web traffic

In the simplest terms, the WWW consists of clients and servers. The servers host content 
(aka resources) that clients would like to access. Clients send requests, often using a 
browser employing the web protocol HTTP, to web servers that receive and process those 
requests. The remote server may store content within a relational database, on its local 
filesystem; requests by clients are translated by the web server into requests for this local 
content. As it turns out, a server may store very little content itself; in this case, the web 
server basically works by translating its clients' requests into requests to other servers, and 
then translates and relays the responses back. As mentioned above, both clients and 
servers have sensitive content that needs to be protected from attack. 

Universal Resource Locators (URLs)

Resources accessible via the WWW identified by a URL, or Universal Resource Locator. A 
URL consists of three parts: The protocol; the hostname/server; and the path. For example, 
in the URL http://www.cs.umd.edu/~mwh/index.html , the protocol is http ; the 

hostname is www.cs.umd.edu ; and the path is ~mwh/index.html . Here's a little more 

information about each of these.

The protocol portion of a URL identifies the communication protocol by which that the 
remote server will return the specified resource. For our example, http  identifies the 



standard HTTP,  which we'll say more about below. Other examples include ftp  (for 

file transfer protocol), https  (for HTTP secure), and tor  (which employs onion 

routing to help make the client anonymous to the server).
Hostname/server is a name of the remote server that serves the specified resource. 
This name must be translatable to an Internet Protocol (IP) address via the Domain 
Name Service (DNS). In addition to names like www.cs.umd.edu  or facebook.com , IP 

addresses like 128.8.127.3  can also be used.

The path is the "address" of the resource at the remote server. In the simplest case, this 
path is translates pretty directly to a file on the remote server's filesystem. For example, 
~mwh/index.html  might translate to /fs/www/users/mwh/index.html  on the 

filesystem of the machine servicing requests to www.cs.umd.edu . On the other hand, a 

path is often more complicated. For example, the path delete.php?f=joe123&w=16  

indicates that the remote resource is file delete.php  which contains code that should 

be run with arguments f=joe123  and w=16 . As such, the path identifies dynamic 

content; it's a PHP program that will be executed at the server with the given arguments,
returning content so that it can be viewed at the requesting client.

HyperText Transfer Protocol (HTTP)

A typical WWW interaction starts with a client, perhaps because a user clicks on a  web 
page rendered in their browser. This click results in an HTTP request being made for a 
resource named by an associated URL. Maybe the click was on a thumbnail picture, and the
request amounts to requesting the full-sized picture from the remote server.

An HTTP request contains several elements, most notably the URL of the resource the 
client wishes to obtain and the request method; the two most common methods (covered 
by the vast majority of Web traffic) are GET  and POST .  (Other request methods include 

HEAD , PUT , DELETE , CONNECT , OPTIONS , TRACE , and PATCH .) The GET  method 

indicates the request to retrieve (read) data associated with the given URL, with no changes 
being made to any server-hosted data. The PUT  method indicates that the request 

includes data being provided by the client, e.g., as part of a web form, and as such the 
server might update its local state.

A request also contains various headers which provide information about the browser (e.g., 
which browser and version is being used), local capabilities (e.g., whether the requesting 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers


machine is full-scale computer or a small mobile device), and resources the client may have
that are relevant to the request (e.g., cookies, which we will discuss shortly). 

Now we will consider the two main request methods, and what responses to requests look 
like.

HTTP GET

An HTTP request is a textual message formatted in a certain way, according to the protocol 
specification. Suppose we type in http://www.reddit.com/r/security  into our browser. 

This will result in a text message like the following being sent to www.reddit.com :

GET /r/security HTTP/1.11
Host: www.reddit.com2
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)3
Accept: text/html,application/xhtml+xml,application/xml;...4
Accept-Language: en-us,en;q=0.55
...6

We see in the first line the request method, GET , followed by the URL path /r/security , 

followed by the protocol HTTP  (version 1.1). On the next line is the server/hostname, 

www.reddit.com . The remaining lines contain the request's headers. The User-Agent  

header indicates the software making the request; it is typically a browser, but it could be 
something like wget , the JDK, etc. 

We will consider some particular headers in more depth, shortly. One header of interest is 
the referrer URL. This header is contains the name of the resource that linked to the 
resource being requested. For example, if we visited a page at /r/security  and clicked a 

link, we might get a request like this:

GET /worst-ddos-attack-of-all-time-7000026330/ HTTP/1.11
Host: www.zdnet.com2
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11)3
...4
Referer: http://www.reddit.com/r/security5



The (incorrectly spelled) referrer field indicates that the request to www.zdnet.com  came 

from a link on a page hosted at www.reddit.com . This information turns out to be useful 

to defending against a certain sort of attack, called cross-site request forgery. But, more 
on that later.

HTTP POST

An HTTP POST request often arises when a user fills out a form on a web page. When that 
user clicks submit, the POST request is sent. The final part of the request contains the 
client-supplied content. The following is an example of a request made when submitting a 
post to www.piazza.com .  

POST /logic/api?method=content.create&aid=hrteve7t83et HTTP/1.11
Host: piazza.com2
User-Agent: Mozilla/5.0 ...3
...4
Cache-Control: no-cache5
  {"method":"content.create",6
   "params":7
     {"cid":"hrpng9q2nndos",8
      "subject":"<p>Interesting.. perhaps it has to do ..."}}9

The last part of the request in (in curly brackets) names the submitted fields ("keys") and 
their corresponding values. For example, this POST sets the key method 's value to 

content.create  and the key params ' value to be a list of other key-value pairs. (This 

data is encoded according to the format indicated in the header Content-Type ; a typical 

choice is application/x-www-form-urlencoded  which is harder to read than what's shown

above.)

Note that these days it's often the case that data is supplied not just in the POST body but 
also as parameters in the URL itself, as indicated in our discussion of URLs, above. Indeed, 
we see the use of parameters in the piazza.com  POST request, in the form of the &aid= 

... part of the path. However, the intention here is that URL parameters are meant to simply 
name a resource, which has no effect on the server's state, whereas the POST body's 
content is the basis for an update to the server's state.

HTTP Responses



After processing the request from the client, the server sends back a response. For our 
example www.zdnet.com  GET request, here's a possible response.

HTTP/1.1 200 OK1
Date: Tue, 18 Feb 2014 08:20:34 GMT2
Server: Apache3
Set-Cookie: session-zdnet-production=abc123;path=/;domain=zdnet.com4
Set-Cookie: firstpg=05
Expires: Thu, 19 Nov 1981 08:52:00 GMT6
Content-Type: text/html; charset=UTF-87

8
<html>This is the body of the <b>response!</b></html>9

The first line indicates the protocol being used ( HTTP/1.1  in this case), followed by the 

status code ( 200  in this case), followed by the reason phrase ( OK  in this case). The lines 

that follow which begin with a name followed by a colon are the headers (e.g., Date:  , 

Server: , etc.). The Set-Cookie  headers are of particular note, as they tell the browser 

about server-side state that the browser should store on the server's behalf; we'll discuss 
these in more depth later. The very end of the response contains its content. In this case, as 
indicated by the Content-Type  header, it is formatted as HTML.


